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Abstract 

The aim of this study was to make unstructured neuropathological data, located in the NeuroBioBank (NBB), follow Findability, 
Accessibility, Interoperability, and Reusability principles and investigate the potential of large language models (LLMs) in wrangling 
unstructured neuropathological reports. By making the currently inconsistent and disparate data findable, our overarching goal was 
to enhance research output and speed. The NBB catalog currently includes information from medical records, interview results, and 
neuropathological reports. These reports contain crucial information necessary for conducting an in-depth analysis of NBB data but 
have multiple formats that vary across different NBB biorepositories and change over time. In this study, we focused on a subset of 
822 donors with Parkinson’s disease (PD) from seven NBB biorepositories. We developed a data model with combined Brain Region 
and Pathological Findings data at its core. This approach made it easier to build an extraction pipeline and was flexible enough to 
convert resulting data to Common Data Elements, a standardized data collection tool used by the neuroscience community to im
prove consistency and facilitate data sharing across studies. This pilot study demonstrated the potential of LLMs in structuring un
structured neuropathological reports of PD patients available in the NBB. The pipeline enabled successful extraction of detailed tis
sue-level (microscopic) and gross anatomical (macroscopic) observations, along with staging information from pathology reports, 
with extraction quality comparable to manual curation results. To our knowledge, this is the first attempt to automatically standard
ize neuropathological information at this scale. The collected data have the potential to serve as a valuable resource for PD research
ers, facilitating integration with clinical information and genetic data (such as genome-wide genotyping and whole-genome se
quencing) available through the NBB, thereby enabling a more comprehensive understanding of the disease.
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Introduction
Effective data modeling of biological experiment data can have a 
major impact on downstream data usage, accessibility, and sig
nificantly improve research output. Having a robust and sound 
data model allows Findability, Accessibility, Interoperability, and 
Reusability (FAIR) data principles to be employed and provide 
major benefits to research progress [1]. A recent cost–benefit 
analysis by the European Commission on FAIR data suggests that 
not using FAIR data principles costs the European economy ap
proximately e10.2 billion per year [2]. Thus, improving the quality 
of data models by applying these principles serves to save a con
siderable amount of time and resources, further advancing re
search efforts.

With the advent of high-performance computing and artificial 
intelligence (AI), technologies such as natural language process
ing (NLP) and large language models (LLMs) can be used to facili
tate data FAIRification of unstructured data [3, 4]. LLMs are 
advanced AI systems trained on vast amounts of text data, capa
ble of understanding and generating human-like text. These 
models, such as OpenAI’s Generative Pre-trained Transformers 
(GPT) [5], use deep learning techniques to learn statistical 

associations between words in large online text corpora, allowing 

them to produce human-like text outputs [4]. In the context of 

biomedical research, LLMs are currently being explored as a 

means to extract data, identify patterns, and uncover insights 
that may have been previously hidden [6, 7]. While the current 

gold standard of data curation is to perform manual curation, 

this process is time-intensive and can introduce errors. Manual 

curation can also comply with FAIR principles when properly 

implemented. However, LLMs offer potential advantages such as 
increased speed, scalability, and consistency in data extraction 

across large datasets. It is important to note that automated 

curation methods, including those using LLMs, can also intro

duce errors. However, LLMs may hold value in accelerating data 

curation and allowing FAIR data principles to be applied, ulti
mately improving research efficiency.

The National Institutes of Health (NIH)-funded NeuroBioBank 

(NBB, https://neurobiobank.nih.gov/) was established in September 
2013 as a national resource for investigators utilizing post-mortem 

human brain tissue and related biospecimens for their research to 

understand conditions of the nervous system such as Alzheimer’s 

disease (AD), Parkinson’s disease (PD), frontotemporal dementia 
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(FTD), and many others. The NBB operates through several biorepo
sitories across the USA, each maintaining collections of human 
post-mortem brain tissue and related biospecimens. These biorepo
sitories serve as the primary sources for the specimens and associ
ated data in the NBB catalog. The overall goals of the NBB are to (i) 
increase the availability of brain tissue from individuals affected 
and unaffected by brain disorders, (ii) facilitate brain tissue distri
bution, and (iii) provide a central resource of best practices and pro
tocols to the research community. Comprising medical records, 
interview results, and neuropathological reports, the NBB catalog 
serves as an invaluable source of data for researchers. The catalog 
has information on clinical diagnosis, medical history, as well as 
results of whole-genome sequencing. However, key pieces of data— 
specifically, the results of gross and microscopic examination of 
brain samples exist primarily as unstructured notes, often in the 
form of PDF pathological reports. The lack of standardization and 
inconsistent formats used across NBB biorepositories presents a sig
nificant data accessibility challenge, which hinders effective data 
usability and, ultimately, research output. Converting these reports 
to a standardized format in accordance with FAIR principles would 
avoid duplicated efforts by different groups to extract data, acceler
ating research progress. Specifically, our study addresses the fol
lowing FAIR principles:

� Findability: By converting unstructured reports into a stan
dardized format, we enhance the discoverability of the data. 

� Accessibility: Standardization improves data retrieval and ac
cess for researchers. 

� Interoperability: A common format allows for easier integra
tion with other datasets and systems. 

� Reusability: Structured, standardized data are more readily 
reusable for various research purposes. 

Standard representation of pathology data would provide 
researchers with powerful tools to understand the mechanisms 
underlying the development of various pathologies, ultimately 
leading to improvements in the diagnostics and treatment of 
these debilitating conditions.

In this study, we investigated the potential of LLMs in unpack
ing unstructured neuropathological reports, with a focus on a 
subset of patients with PD. PD was selected for this study for sev
eral reasons. First, it provided a sizeable yet manageable dataset 
of 822 reports, which is large enough to be representative but not 
so vast as to overwhelm initial pipeline development. Second, PD 
exhibits moderately homogeneous pathological features, which 
is advantageous for developing and validating our extraction 
methods, as it allows for more consistent patterns in the reports 
while still presenting some variability. This level of homogeneity 
is not always present in other neurological disorders, which 
might have more diverse or complex pathological presentations. 
Additionally, PD is a prevalent neurodegenerative disorder affect
ing millions worldwide, making this research clinically relevant 
and potentially impactful.

Neuropathological reports spanned seven different bioreposi
tories and utilized 15 different formats, including variations in 
file types (e.g. pdf, docx, xlsx) and report structures (e.g. narrative 
descriptions, region-based groupings, electronic data capture 
systems). Reports were first preprocessed and converted to 
HTML file format, as they were provided in various formats. 
Information was then extracted from parsed reports using a 
questionnaire-based method that employed few-shot learning 
using the gpt-3.5-turbo model [8]. The extracted data were then 
combined, harmonized, and manually reviewed for accuracy.

Materials and methods
Source data
We used 822 PD reports generated from seven NBB sites: the 
University of Maryland, University of Pittsburgh, National 
Institute of Mental Health (NIMH), University of Miami, 
Sepulveda, Harvard Brain Tissue Resource Center, and Mount 
Sinai/Bronx VA Medical Center. This represents approximately 
5% of the total number of reports collected by the NBB. The sites 
provided reports in various file formats such as pdf, docx, or xlsx. 
Most of the reports contained sections outlining the specimen re
ceived, neuropathological diagnosis, macroscopic and micro
scopic pathological findings, and pathologist comments. Details 
and formats of the reports differed among the sites: for some 
sites, such as Maryland and Sepulveda, pathology descriptions 
were provided as narratives with sequential descriptions of find
ings. Other sites, such as Harvard and Miami, grouped findings 
by brain regions. Notably, the Mount Sinai site utilized an elec
tronic system to capture information, significantly streamlining 
the data collection process. In total, we compiled data from 822 
neuropathological reports, spanning a 32-year period from 1990 
to 2022. Report selection was based on the presence of a PD clini
cal diagnosis. No additional stratification based on age, gender, 
or disease stage was made, and all personally identifiable infor
mation was redacted by NBB staff. To ensure privacy and confi
dentiality, the NBB implemented a thorough anonymization 
process before sharing the data. This process included removing 
names, dates of birth, addresses, and any other identifiers that 
could potentially link the data to specific individuals. The re
search team received and analyzed only de-identified data, and 
no attempts were made to re-identify individuals. All data han
dling and storage procedures were in compliance with relevant 
data protection regulations and institutional ethical guidelines.

To facilitate the development of an automatic extraction pipe
line, we classified reports based on their formats and created a 
subset of 65 reports, which included the most representative 
reports for each site and format. This selection process priori
tized capturing the diversity of report formats across different 
sites to develop a robust and generalizable NLP pipeline, rather 
than aiming for a strictly random sample. The number of reports 
per format and site varied, reflecting the uneven distribution of 
PD reports across sites in our dataset. Information on the compo
sition of the report subset selected for manual curation is pro
vided in the Supplementary Tables S3 and S4. The 65 reports 
were manually curated by two PhD-level annotators with neuro
science experience. The results were regularly discussed and 
reviewed by the NBB working group to ensure consistency and 
accuracy. This curated subset served as a “gold standard” to de
velop and improve the NLP pipeline.

Data preprocessing and parsing
Neuropathological reports in PDF file format were converted to 
HTML using the ABBYY FineReader Optical Character 
Recognition (OCR) tool (https://pdf.abbyy.com/). Similarly, docx 
reports were converted to HTML using the doc2html Python li
brary (https://github.com/chadwickcole/doc2html). HTML was 
chosen as the target file format because it preserved information 
about text styles, which was utilized to mark the beginning of re
port sections. During preprocessing, the reports were split into 
sections such as gross pathology, microscopic findings, diagnosis, 
and sample information. For the reports where tissue informa
tion was available, an additional sub-rubric “tissue” was added. 
An output table was created containing report ID, section type, 
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and section content. The data preprocessing and parsing stage 
enabled the conversion and organization of neuropathological 
reports into a structured and machine-readable format, laying 
the foundation for subsequent NLP pipeline development and 
data extraction.

Data model development
The data model is the foundation for our approach to standardizing 
and structuring neuropathology reports. By data model, we refer to 
a representation of entities, their relationships, and allowed attrib
utes. To design the data model, we focused on establishing a 
“region-finding-qualifier” triad (e.g. “Hippocampus—Neurofibrillary 
degeneration—Moderate”). This approach contrasts with many 
Common Data Elements (CDEs), where predefined combinations of 
regions and findings are treated as fixed, single data elements with 
limited flexibility for expansion or modifications. In CDE systems, 
these fixed region-finding pairs typically include a degree or quali
fier option but do not allow for the creation of new combinations 
beyond those predefined in the system. The rationale behind 
selecting the “region-finding-qualifier” triad approach was 2-fold. 
First, it allowed us to perform NER on the region, finding, and quali
fier independently, which greatly facilitated the development of 
the NLP pipeline. Second, this approach enabled us to deal with a 
variety of report styles and older reports that might not capture 
brain features or findings according to modern standards.

To ensure consistency and standardization, we utilized exter
nal ontologies and controlled vocabularies for the model attrib
utes. These sources included the Allen Human Brain Atlas 
(AHBA) [9], Systematized Nomenclature of Medicine (SNOMED) 
[10], National Cancer Institute Thesaurus (NCIT) [11], Disease 
Ontology (DOID) [12], Medical Subject Headings (MeSH) [13], 
Federal Interagency Traumatic Brain Injury Research (FITBIR) 
CDEs [14], and National Alzheimer’s Coordinating Center (NACC) 
CDEs [15].

NLP pipeline and postprocessing
We utilized the OpenAI GPT-3.5 model [8] as the primary LLM en
gine for our NLP pipeline development. No additional fine-tuning 
was performed, and the standard settings were employed. All 
calls for gpt-3.5-turbo were executed through the command line, 
as per the recommended guidelines using default model parame
ters (temperature 1, top P 1, frequency penalty 0, presence pen
alty 0). We used Python for data extraction and R for data 
harmonization and Quality Control (QC).

Two approaches were adopted for data extraction from neuro
pathological reports. The first approach was questionnaire- 
based, in which the input text was directly mapped to the data 
model through a series of questions and coded answers. This 
method facilitated a structured approach to obtaining relevant 
information from the reports.

The second approach focused on the direct extraction of tis
sue–finding–qualifier triads from the text. However, this required 
a harmonization step, as the extracted tissue, finding, and quali
fier terms were not directly mapped to our data model. To ad
dress this challenge, we performed manual harmonization with 
the assistance of an embedding-based classification technique, 
using the text-embedding-ada-002 model from OpenAI [16]. This 
process involved combining extracted raw terms with terms 
from controlled vocabularies (e.g. AHBA for regions, the con
trolled vocabulary for findings and qualifiers), calculating 
embeddings, and clustering them into groups of 10–20 terms us
ing DBScan. We then manually analyzed each cluster, mapping 
terms to controlled vocabularies and extending them as 

necessary. This approach significantly accelerated the mapping 
process by grouping semantically similar terms, allowing for effi
cient categorization and mapping of raw extracted terms into a 
standardized format compatible with our data model, which was 
based on the aforementioned ontologies and controlled 
vocabularies.

These two approaches were designed to be complementary, 
addressing different aspects of the data extraction challenge. 
The questionnaire-based method focused on robustly extracting 
information deemed most critical by the expert community, 
while the triad extraction approach provided broader coverage, 
capturing findings that may not have been explicitly included in 
the questionnaire. Together, these methods ensured a compre
hensive and structured extraction of relevant data from the neu
ropathological reports.

Evaluation metrics
To evaluate the quality of data extraction, we compared the 
results obtained from the automatic extraction pipeline with the 
manually curated data (“gold standard”) for the 65 selected 
reports. We used the following metrics to assess performance:

� Jaccard Index: Measures the overlap between two sets, calcu
lated as the size of the intersection divided by the size of the 
union of the sets. 

� Sensitivity: The proportion of true positives correctly identi
fied, calculated as true positives divided by the sum of true 
positives and false negatives. 

� Precision: The proportion of positive identifications that are 
correct, calculated as true positives divided by the sum of 
true positives and false positives. 

For macroscopic and microscopic findings, we assessed the 
agreement between the lists of brain regions identified manually 
and those extracted by the automatic pipeline. In cases where 
brain regions aligned, we compared the associated findings. In 
cases where both brain regions and findings aligned, we com
pared the associated qualifiers. For regions with mismatches, we 
sampled and analyzed regions that were present exclusively in 
either the manual curation or the pipeline extraction. For neuro
pathological staging information, we compared the manually cu
rated staging data with the staging information extracted by the 
automatic pipeline.

By conducting this thorough evaluation, we were able to as
sess the performance of the extraction pipeline and identify 
areas for improvement.

Results
Data model
Overview
In this study, we have developed a comprehensive data model to 
represent and capture the relevant information from neuropath
ological reports. Key entities and attributes are shown on the 
Entity Relationship Diagram (ERD; Fig. 1). Full ERD and tabular 
description of all entities and attributes are provided in 
Supplementary Information S1 and S2. The primary objective of 
this data model is to efficiently organize and store the extracted 
data from the pathology reports, facilitating easy access and 
analysis for researchers. The data model comprises several key 
entities, which are interconnected to represent the various 
aspects of the neuropathological findings. At the core of the data 
model is the Neuropathological Evaluation entity, which serves 
as a central hub linking the other entities. Additionally, this 

Unpacking unstructured data | 3  

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae072#supplementary-data


entity is connected to the Donor entity, enabling a clear associa
tion between the evaluation results and the correspond
ing donor.

The Neuropathological Evaluation entity is further linked to 
four main sub-entities: Evaluation Summary, Neuropathological 
Diagnosis, Macroscopic Evaluation, and Microscopic Evaluation. 
The Evaluation Summary entity encompasses the staging infor
mation (e.g. Braak and Del Tredici stage for PD [17], ABC score 
according to NIA-AA 2012 consensus guidelines [18], and others 
[19–22]). The Neuropathological Diagnosis entity lists all neuro
pathological diagnoses identified in the report, serving as a com
prehensive catalog of the patient’s conditions.

The Macroscopic and Microscopic Evaluations entities capture 
detailed findings from gross and microscopic examinations of 
the brain samples, respectively. These entities store both positive 
and negative findings, ensuring a complete representation of the 
pathological landscape. They are essential for understanding the 
specific pathological abnormalities present in the sample and 
their implications on the patient’s condition.

Data dictionary
To accurately capture the anatomic location of pathology find
ings, we utilized the AHBA [9] as the foundation for our data 
model’s representation of brain regions. The AHBA offers com
prehensive coverage of brain structures; however, certain adjust
ments and extensions were necessary to address the specific 
needs of our study. First, the AHBA does not encompass the vas
cular system. To address this, we added major arteries to the 
data dictionary and provided corresponding links to external 
ontologies such as MeSH [13] or UBERON [23]. Similarly, we in
cluded adjacent structures that are not part of the brain, such as 
the skull and scalp, with appropriate links to external ontologies.

Another challenge we encountered was the presence of hyper
specific and hypospecific regions in the neuropathological 
reports. Hyperspecific regions, such as the CA1/CA2 junction or 
calvarial dura, contain a level of detail absent in the AHBA. 

Conversely, hypospecific regions, such as the visual cortex or oli

vary nucleus, represent groups of brain regions that do not have a 

corresponding entity in the AHBA. In some cases, the reports 

used terminology for brain regions that only exist for non-human 

species, such as the caudal medullary velum (rat) or occipital gyrus 

(macaque). To address these issues, we added these regions to 

our data dictionary and, where possible, provided links to exter

nal ontologies and parent regions.
In instances where the report specified a particular part of a 

brain region, we captured this information using a combination 

of “Region” and “Section/Directionality”. For example, posterior oc

cipital cortex was mapped to a combination of the occipital cortex 

region (AHBA id: 3614) and posterior directionality. Lastly, we ac

knowledged that many reports did not associate specific regions 

with certain findings. For example, reports may mention findings 

in blood vessels, gray matter, or lesions, without indication of 

where exactly the finding is located. To accommodate these 

cases, we included a “Non-localized Structure” attribute in our 

data model.
In the development of our data model, we aimed to effectively 

capture and represent macroscopic and microscopic finding 

names and their associated qualifiers. Generally, finding names 

encompass descriptions of the observation, such as calcification, 

atrophy, necrosis, or abnormal coloration, while qualifiers pro

vide optional details regarding the severity, quantity, color, 

shape, and other properties of the findings. We used findings and 

qualifiers from existing neuropathology CDEs such as those sup

plied by FITBIR and NACC and extended the dictionary with in

formation from reports. Our initial approach involved separating 

finding names and qualifiers into basic repeating elements to re

duce the number of distinct values in the dictionary and stream

line data extraction and harmonization. However, after 

consultations with the NBB working group, we made certain 

exceptions. For example, instead of separating diffuse plaques into 

the finding plaque and the qualifier diffuse, we maintained it as a 

Figure 1. ERD for Neuropathological data model. Key entities and attributes are shown. Relationships between entities follow standard crow foot 
notation. Color scheme corresponds to conceptual subschemas: donor conceptual subschema (Donor); biological specimen conceptual subschema 
(Gross Sample); case diagnosis conceptual subschema (Neuropathological Diagnosis); pathology case conceptual subschema (Neuropathological 
Evaluation, Evalation Summary, Macroscopic Evaluation, Microscopic Evaluation). Attributes in bold are mandatory. PK, primary key; FK, foreign key; 
CV, attribute values taken from controlled vocabulary.
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single finding. This decision was made to preserve the specificity 

and clarity of certain findings.
The final data model comprised 183 macroscopic findings, 416 

microscopic findings, and 333 qualifiers. To ensure consistency 

and interoperability, we mapped the findings to established ex

ternal ontologies, such as SNOMED and NCIT whenever possible. 

Specifically, we successfully mapped 78 out of 183 macroscopic 

findings (42.6%), 97 out of 416 microscopic findings (23.3%), and 

38 out of 333 qualifiers (11.4%) to these ontologies.

Data extraction pipeline
Overall description
The overall data extraction pipeline (Fig. 2) involves six crucial 

steps. In the first step, the neuropathological reports in pdf and 

docx file formats are converted into HTML file format, which effi

ciently preserves the styling information. This conversion allows 

for easier parsing and extraction of relevant data in subsequent 

steps. In the second step, the HTML documents are split into dis

tinct sections, such as gross pathology, microscopic findings, di

agnosis, and sample information. This splitting is achieved by 

identifying formatting characteristics (e.g. bold text, larger font 

size, all caps) that typically denote section headers in the original 

documents and are preserved in the HTML conversion. For 

reports containing available tissue information, an additional 

subcategory titled “tissue” is incorporated. An output table is 

generated, encompassing report ID, section type, and section 

content, which serves as a structured representation of the data 

extracted from the reports.
The third step involves feeding the machine-readable data 

from the output table into the data extraction process. Some in

formation, such as brain weight, donor age, and sex, is already 

structured and can be effortlessly extracted using pattern match

ing. To extract most of the other information, we employed two 

approaches: a questionnaire-based method and a few-shot learn

ing direct approach, both utilizing GPT-based models from 

OpenAI. In the fourth step, all extracted information is combined 

and reshaped to create a unified dataset. This dataset then 

undergoes a harmonization process in step five, where the data 

are mapped and aligned with the developed data model specifi

cally tailored for neuropathological conditions.
The final step consists of assessing the quality of the extracted 

data. Values are compared to both the data model and manually 

curated data to ensure accuracy and consistency across the 

dataset. Any discrepancies or issues identified during quality as

sessment are addressed to refine the data extraction pipe

line further.

Direct approach for data extraction
The data extraction process adopted an approach conceptually 

similar to traditional Named Entity Recognition (NER) techni

ques. Classical NER methods, such as N-gram phonetic search 

[24], perform optimally when dictionaries are well-defined and 

comprehensive. However, in our case, we could not rely on the 

AHBA for region extraction, as it did not encompass all the 

regions we intended to extract. Furthermore, the dictionary for 

findings was non-existent, rendering conventional NER tools 

unsuitable for extracting findings and qualifiers. Consequently, 

we employed LLMs in the initial step of data extraction to identify 

all mentioned brain regions. To improve sensitivity, region ex

traction was executed twice, and tissue lists from both runs were 

consolidated. Subsequently, for each mentioned tissue, LLMs 

extracted associated findings and qualifiers. We guided the 

model using a few-shot learning approach, providing request and 

response examples to assist in handling complex or ambiguous 

cases. Examples were selected based on analysis of cases where 

initial extraction failed, with 4–6 examples typically included per 

prompt. Prompts were tailored slightly for different NBB sites.
Initially, the davinci-03 model was employed, which was not 

specifically fine-tuned for user requests. In the final version, we 

used the gpt-3.5-turbo model. Since gpt-3.5-turbo was trained to 

respond to direct user requests, we supplemented the prompts 

with explicit instructions regarding the desired output format. 

Examples and the overall protocol can be found in Fig. 3.
While the direct approach effectively captured information 

present in the reports, it necessitated subsequent harmonization, 

as the LLM was not cognizant of specific dictionaries employed in 

later stages. Moreover, the model did not consistently differenti

ate between finding names and qualifiers, resulting in discrepan

cies such as Finding Name size decreased versus the combination 

of Finding Name size and Finding Qualifier decreased. Therefore, a 

crucial harmonization step was essential to render the extracted 

information useful and consistent. Nevertheless, the developed 

few-shot learning approach successfully navigated ambiguous 

information and the absence of dictionaries, yielding semi- 

structured raw output that could be harmonized downstream.

Figure 2. Schematic representation of data extraction pipeline.
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Questionnaire-based approach for data extraction
The questionnaire-based approach emulates data abstraction by 
filling out electronic forms. In this method, a series of questions 

are posed to the text, with coded answers provided. The goal is 
not to extract every piece of data but to focus on what is most im
portant, as defined by established domain-specific question
naires. These questionnaires, developed by experts in the field, 

prioritize the most clinically and research-relevant information 
for specific diseases. For example, the NACC questionnaire fo
cuses on findings crucial for establishing diagnoses of AD and 

PD. We employed a similar approach where, instead of a human 
operator, it was the LLM that answered the questions. In brief, 
the LLM was provided with instructions to answer the questions, 

a context (specific section of the report) and the questions them
selves. These instructions or questions could be direct (e.g. 
“Provide the whole brain weight, in grams.”) or dictionary-based 
(e.g. “What is the severity of cerebral cortex atrophy?” with coded 

answer options that were taken from NACC or FITBIR question
naires). Answers to dictionary-based questions were mapped di
rectly to the data model, so no additional harmonization 

was required.
Assessing data extraction quality for data extracted by the 

questionnaire revealed several failure modes. First, the LLM was 

not able to discriminate between cases where the region was not 

mentioned and cases where no abnormalities were found. 
Moreover, the LLM tended to deviate from direct answers and 
make conclusions that were close but not exactly answering the 
questions. For example, when asked about the Braak & Del 
Tredici stage of PD [17], the model sometimes attempted to inter
pret the extent of findings and give stage assessments, rather 
than reporting that the stage was not mentioned (Fig. 4). To ad
dress these issues, we modified the flow of the questionnaire and 
added intermediate questions such as “Is X mentioned in the re
port? (0- No, 1- Yes)”, “Is there evidence of X? (0- No, 1- Yes)”, and 
only then “What is the severity of X?”. This approach enabled us 
to distinguish more precisely between present and absent find
ings and reduce hallucinations.

Quality assessment
Overall quality assessment results
To assess the quality of data extraction, we compared the data 
extracted from 65 reports by the pipeline to the data extracted 
through manual curation. For macroscopic and microscopic find
ings, we evaluated the agreement between the lists of brain 
regions identified manually and those extracted by the automatic 
pipeline. In cases where findings intersected, we compared the 
associated qualifiers. For regions with mismatches, we sampled 
and analyzed regions that were exclusively present in either the 
manual curation or pipeline extraction. For neuropathological 

Figure 3. Workflow for direct data extraction. The $ designates text that is dynamically substituted by the data from reports, or results obtained on 
previous steps.

6 | O. Stroganov et al.  



staging information, we compared the manually curated staging 

data with the staging data extracted by the automatic pipeline. 

Overall metrics are reported in Table 1.
To further characterize problems with data extraction, we 

sampled up to 10 mismatches of both types (data present in 

manual curation only, data present in pipeline extraction only) 

for every site for regions in macroscopic evaluations. Mismatches 

were categorized based on the type of problem: issues with pipe

line data extraction, issues with manual curation, or issues with 

harmonization. Then, types of issues were identified (Table 2).
Issues with the pipeline data extraction comprised 9.9% of the 

total amount of problems. In 9.6% of cases, information 

extracted by the pipeline was more accurate than information 

produced by curators. Additionally, 15.8% of mismatches were 

due to issues with harmonization, where both curation and pipe

line approaches produced results that could be considered 

valid—the same data were interpreted in different ways. This 

analysis suggests that the total accuracy of data extraction for 

macroscopic findings surpasses 74.2% (the number of matching 

records plus the number of issues due to curation problems).

Analysis of common pipeline extraction errors
Incorrect data extraction

We identified four types of pipeline errors. The most frequent 

cases involved incorrect data extraction (3.7%). In many instan

ces, these errors resulted from the incorrect extraction of con

text. For example, the LLM accurately identifies “cerebral 

hemisphere” as one of the brain regions mentioned in the follow

ing extract: 

Coronal sections of the left hemisphere at the anterior frontal, striatal, 

and lentiform-thalamic-substantia nigra levels, and the midpons- 

cerebellum are examined. There is no softening, discoloration, hemor

rhage, mass, or other lesion. Moderate cortical atrophy is seen in the 

frontal and temporal lobes.

The model then proceeds to extract the following context: 
“Coronal sections of the left hemisphere at the anterior frontal, striatal, 
and lentiform-thalamic-substantia nigra levels, and the midpons- 
cerebellum are examined. Moderate cortical atrophy is seen in the frontal 
and temporal lobes”, which is then converted into a region, finding, 
and qualifier combination of “cerebral hemisphere, atrophy, moder
ate”. This is less precise than the “frontal cortex, atrophy, moderate” 
extracted by curators.

Extraction formatting errors

In 2.5% of cases, the pipeline did not extract region information. 
Many of these errors occurred when the tissue was correctly 
identified, but the pipeline had trouble producing results in the 

Figure 4. An example of a typical questionnaire prompt with responses and follow-up. Flowchart of the questions aimed to discriminate between 
absence of information, negative findings, and positive findings. The follow-up question “Explain your answer” was used only during manual 
debugging to understand the LLM’s reasoning and to develop examples for few-shot learning. It was not included in the final automated pipeline.

Table 1. Overall QC metrics for Macroscopic and Microscopic 
evaluation (comparison of sets of regions) and Evaluation 
summary (comparison of staging information).

Jaccard Index  
(accuracy)

Sensitivity Precision

(C\P)/(C[P) (C\P)/C (C\P)/P

Macroscopic evaluation 64.6 83.6 73.9
Microscopic evaluation 55.9 76.5 67.5
Evaluation summary 64.6 71.9 86.4

C and P denote information extracted by Curation and Pipeline, respectively. 
C\P denotes records intersection of sets of records, C[P denotes union of sets.

Unpacking unstructured data | 7  



desired format. For example, “The lateral cerebral ventricle is normal 
in size and shape” was incorrectly converted to “lateral cerebral ven
tricle jnormal size; normal shape j NA”. In the correct format, re
gion/finding/qualifier triplets should be separated by semicolons, 
and the correct output should look like “lateral cerebral ventricle j
normal size j NA; lateral cerebral ventricle j normal shape j NA”.

Imprecise data extraction

Imprecise extraction accounted for 1.9% of the pipeline extrac
tion problems. Typical examples included extraction of “cerebral 
cortex” without specifying the pathology location in more detail. 
In many cases, the pipeline extracted both general regions (cere
bral cortex) and specific regions (e.g. frontal cortex). Additionally, 
some questions from the questionnaire asked about the presence 
of pathology in general regions and were therefore mapped to 
these general areas. Moreover, the coded list of answers forced 
the LLM to perform qualifier mapping. For instance, “minimal” 
was typically mapped to “mild”, whereas “mild to moderate” could 
be mapped to either “mild” or “moderate” without a systematic ap
proach to the mapping process. Similarly, pathological evalua
tions often contained ranges of stages (e.g. Braak II–III). The LLM 
randomly collapsed the range to one of the stages.

Confusion between absence of abnormalities and missing 
information

Last, 1.9% of pipeline extraction problems stemmed from confu
sion between findings that were not reported and cases where no 
abnormalities were found in specific regions. The LLM would eas
ily become confused when the report contained a full list of sec
tions and tissues that were analyzed, assuming that if a tissue 
was reported but no abnormality was explicitly mentioned, the 
tissue was normal. Initially, the percentage of these errors was 
much higher, so we had to remove the list of regions at the pre
processing stage whenever it was possible to identify such a list 
using style markers or headers.

Harmonization issues and problems with manual curation

Harmonization issues accounted for the largest portion (15.8%) 
of mismatches between manually curated data and data 
extracted by the pipeline. Common examples of these issues in
clude discrepancies in naming general regions. For instance, 
“cerebrum” is often interchanged with “cerebral hemispheres” by 
both the pipeline and manual curation.

Another example illustrating the differing approaches be
tween curators and the pipeline can be seen in cases where a list 
of tissues is reported. For example, a report might contain the 

following information: “Neostriatum: (caudate nucleus, putamen, 
and nucleus accumbens): Unremarkable.” Curators interpreted this 
as “neostriatum, unremarkable”, whereas the pipeline extracted all 
four mentioned tissues separately (neostriatum, caudate nucleus, 
putamen, and nucleus accumbens) and reported all of them as 
unremarkable.

In some cases, harmonization problems arose from instances 
where a finding or region could be represented in different ways, 
such as “junction between cortex and white matter” versus a combi
nation of “cortex” and “white matter”, or “tonsillar herniation” versus 
a combination of “cerebellar tonsil” and “herniation”.

Last, a significant portion of mismatches (9.6%) could be at
tributed to either imprecise extraction by curators (5.2%) or infor
mation not being extracted at all (4.4%). These issues are more 
prevalent for sites that provide information-rich reports (e.g. 
Harvard and Miami), as the sheer amount of information in these 
reports makes manual curation more prone to errors.

Dataset characteristics
The final version of the dataset extracted from 822 reports on 
donors with a clinical diagnosis of PD consisted of 19,000 macro
scopic and 44,000 microscopic observations. Of these, 35% of 
macroscopic and 46% of microscopic observations were regarded 
as abnormal, while the remaining could be considered “normal” 
as the tissues were examined, but no abnormalities were found. 
One thousand seven hundred and thirty-five neuropathological 
diagnosis records were extracted from reports. Lewy body disease 
was the most frequent among the donors; together with PD, it 
accounted for 689 cases (90.1%) of the 764 reports where infor
mation about neuropathological diagnoses was present. Among 
other frequent diagnosis were cerebral infarction (234 cases), ce
rebral autosomal dominant arteriopathy (230), and FTD (140 
cases) (see Table 3).

Interestingly, 10% of donors did not have Lewy body disease or 
PD neuropathological diagnoses despite having clinical diagno
ses. The most frequent neuropathological diagnoses for such 
patients were cerebral autosomal dominant arteriopathy (50 
cases), cerebral infarction (50 cases), and FTD (26 cases).

Most frequent microscopic and macroscopic findings are pre
sented in Table 4. Not all reports contained results of macro
scopic or microscopic examination. Hypopigmentation of 
substantia nigra was present in 59.5% of 773 reports that con
tained data on macroscopic findings. Microscopically, these find
ings were frequently correlated with neuronal loss and Lewy 
bodies. Among other macroscopic findings were atrophy (in fron
tal lobe, or without further specification), pigmentation of 

Table 2. Breakdown of comparison between manually extracted data and data extracted by pipeline by category for 
macroscopic evaluation.

Category Description Estimated %

Match Results of curation matches results of the pipeline 64.6
Pipeline issues Any issues due to incorrect or imprecise data extraction by pipeline. This includes the  

following sub-categories:
9.9

Pipeline errors Information was extracted by pipeline incorrectly 3.7
Pipeline recovery Brain regions are present in report but were not extracted by the pipeline 2.5
Pipeline precision Regions were extracted by pipeline with insufficient precision 1.9
Pipeline missing/normal Findings were extracted by pipeline as normal, but were missing in report or vice versa 1.9
Curation issues Any issues due to incorrect or imprecise data extraction by curators. This includes the  

following sub-categories:
9.6

Curation recovery Brain regions are present in report but were not extracted by curators 5.2
Curation precision Regions were extracted by curators with insufficient precision 4.4
Harmonization issues Mismatch due to information being extracted in different ways, or mapped to different terms 15.8

Error percentage is estimated from sampling of up to 20 mismatching records per site (10 records with curation only, 10 records with pipeline only region).
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substantia nigra, and increased size of lateral ventricle. 

Microscopically, neuronal loss and Lewy bodies were observed in 

substantia nigra and more specifically in pars compacta, and lo

cus coeruleus, neurofibrillary degeneration—in entorhinal area 

and hippocampus.

Discussion
In this study, we explored the capabilities of LLMs, such as GPT- 

based models, for data extraction from neuropathological 

reports. The first step for successful data extraction involves 

building a flexible data model that can accommodate a variety of 

data while facilitating extraction and subsequent harmonization. 

We achieved this by centering our model on regions, findings, 

and qualifiers, each of which can be varied independently. This 

approach deviates from the approach used to build CDEs, in 

which the central conceptual entity consists of predefined sets of 

regions and findings. While the CDE approach is more suitable 

for standardizing crucial information in electronic form, it is less 

flexible and less suitable for automated data extraction. 

Moreover, different electronic systems may contain sets of CDEs 

that are not compatible. By deconstructing CDEs into triads of 

regions, findings, and qualifiers, data become more flexible and 
can be easily converted, as demonstrated in our approach where 
we merged data from electronic system used to capture informa
tion in Mount Sinai with data extracted from pathology reports 
from other sites.

This study has demonstrated the significant potential of LLMs 
in structuring unstructured neuropathological reports. LLMs can 
handle ambiguous information and the absence of predefined 
dictionaries, which is essential when dealing with diverse and 
complex data. The reasoning capabilities of LLMs make it possi
ble to extract complicated relationships and infer information 
that would be unreachable for standard methods. In certain 
cases where the amount of information is overwhelming, LLMs 
outperform manual data extraction and retrieve information 
more reliably.

Despite the benefits of LLMs, there are limitations to their ap
plication in data extraction from neuropathological reports. For 
instance, LLMs may struggle to differentiate between cases 
where a region is not mentioned and cases where no abnormali
ties were observed. Additionally, LLMs may inaccurately extract 
context or become confused when dealing with complex report 
structures. These limitations can lead to discrepancies between 
manually curated data and data extracted by the pipeline. 
Furthermore, LLMs may occasionally deviate from direct answers 
or make conclusions that are close but not exactly answering 
the questions.

The present study serves as a pilot effort, focusing on donors 
with PD, which represents less than 5% of the total number of pa
thology reports in the NBB. Although a significant portion of 
donors with PD have other comorbidities (e.g. AD and cerebrovas
cular disease), extending the pipeline to work with other patients 
would necessitate modifications to both the data model and the 
extraction workflow. For instance, entities describing brain 
tumors or specific findings related to traumatic brain injury 
could be incorporated into the model. The data dictionary could 
be expanded to encompass findings more characteristic of other 
pathologies, and corresponding evaluation staging information 
should be included. Moreover, certain sites (Pittsburgh and 
NIMH) were sparsely represented in the PD datasets we exam
ined, and integrating additional reports from these sites might re
quire modifications to the preprocessing algorithm. Additionally, 
the NACC questionnaire used in the data extraction pipeline 
should be extended with questions relevant to all types of pathol
ogies present in the broader population of reports.

While the current data extraction approach achieved 74.2% 
accuracy and was comparable with manual curation results, we 
suggest several avenues for further improvement and scaling up. 
The LLM used in this study, GPT-3.5, has been superseded by a 
more powerful model, GPT-4 [25]. Another approach may involve 
fine-tuning the LLM to better understand the specific domain of 
neuropathology and further adapting it to handle complex and 
diverse data formats.

A significant portion of time was devoted to manual harmoni
zation of data and mapping from LLM output to data dictionaries. 
For some attributes such as brain regions and qualifiers, we ex
pect the harmonization efforts to scale sub-linearly, as the cur
rent set of reports already covered a significant variety of values. 
Other attributes, such as finding names, might still require sub
stantial efforts to harmonize, as the data are dependent on the 
type of pathology. LLMs and related NLP capabilities, such as us
ing embeddings for mapping between information provided by 
LLMs and predefined ontologies, might be employed to expedite 
the harmonization process.

Table 3. Number of reports with neuropathological diagnosis 
(only diagnosis with prevalence >5% are shown).

Diagnosis name Number of reports (%)

Lewy body disease 522 (68.3)
Cerebral infarction 233 (30.5)
Cerebral autosomal dominant arteriopathy 230 (30.1)
PD 227 (29.7)
Neurofibrillary degeneration 133 (17.4)
Cerebrovascular disease 100 (13.1)
FTD 60 (7.9)
AD 49 (6.4)
Total number of neuropathological diagnoses 764 (100)

Table 4. Most frequent microscopic and macroscopic findings 
extracted from reports.

Finding Brain region Number  
of reports (%)

Macroscopic findings 773 (100)
Hypopigmentation Substantia nigra 485 (59.5)
Hypopigmentation Locus coeruleus 285 (35.0)
Atrophy Frontal lobe 237 (29.1)
Atrophy Cerebral cortex 229 (28.1)
Pigmentation Substantia nigra 203 (24.9)
Increased size Lateral ventricle 153 (18.8)
Atherosclerosis Cerebrum 124 (15.2)
Atrophy Temporal lobe 123 (15.1)
Atherosclerosis Circle of Willis 109 (13.4)

Microscopic findings 815 (100)
Neuronal loss Substantia nigra 434 (53.3)
Lewy bodies Substantia nigra 403 (49.4)
Neurofibrillary  
degeneration

Entorhinal area 295 (36.2)

Lewy bodies Locus coeruleus 267 (32.8)
Neuronal loss Locus coeruleus 231 (28.3)
Neurofibrillary  
degeneration

Hippocampus 206 (25.3)

Neuronal loss Pars compacta 197 (24.2)
Lewy bodies Pars compacta 168 (20.6)
Gliosis Substantia nigra 164 (20.1)
Pigmentation Pars compacta 158 (19.4)
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The resulting dataset contains a substantial volume of infor
mation on the macroscopic and microscopic pathology of PD. 
Due to the presence of significant amount of other pathologies 
such as cerebral infarction, FTD, and AD, the pipeline and data 
model could be easily extended to other neuropathologi
cal conditions.

Conclusions
In this study, we have developed a data model and data extrac
tion pipeline that leverages LLMs to structure unstructured neu
ropathological reports from the NBB, specifically focusing on PD 
donors. To our knowledge, this is the first attempt to automati
cally standardize neuropathological information at this scale. 
The pipeline and data model can be repurposed and extended to 
accommodate other pathological conditions, making it a versa
tile tool for researchers. Furthermore, the collected data have the 
potential to serve as a valuable resource for PD researchers, 
bridging the gap between clinical information and genetic data, 
and thereby facilitating a more comprehensive understanding of 
the disease.
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