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The exponential growth of single-cell sequencing data necessitates innovative approaches for
Integration, analysis, and knowledge discovery. This study presents a novel method for extracting
knowledge graphs from single-cell embeddings, utilizing the Rancho dataset from the Single Cell
Data Science (SCDS) consortium, which comprises 70 million deeply curated cells. We employed
scGPT, a large language model tailored for single-cell analysis, to embed a subset of 10 million
cells from the SCDS dataset. The embeddings were projected onto a low-dimensional space
using UMAP and subsequently clustered. Each cell cluster was represented as a node in a
knowledge graph, with predicates such as "similar to," "subset of," and "superset of" connecting
clusters across different datasets.

Leveraging the deep annotation at the sample level, we linked cell sets to specific diseases,
tissues, and perturbations/conditions in which they were enriched. Additionally, cell sets were
connected to overexpressed genes. The resulting knowledge graph effectively bridged diseases
and perturbations to genes through cell sets, providing a high-resolution representation of the
data. This approach significantly enhances the value of single-cell data by enabling the discovery
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SCDS (11.2 million cells, 1324 donors,
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was mostly focused on liver samples.
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Gene expression embeddings (512 dimensions) were calculated with scGPT and
loaded into a vector database for fast retrieval.

For every dataset UMAP 2D projection of
scGPT embeddings was calculated. UMAP
projections were clustered using DBSCAN.

Pairwise distance matrix between each
cell cluster across all datasets was
constructed. Two parameters were used to
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of cell populations linked to specific phenotypes. Our method demonstrates the power of
combining large language models with knowledge graph technigues to improve data integration
and facilitate novel insights in single-cell biology. This framework has the potential to accelerate
discoveries Iin various fields, including disease mechanisms, drug responses, and cellular
heterogeneity.

construct the matrix:

—distance cutoff (maximal distance In
embedding space so that cells are
considered "the same")
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—cluster overlap — fraction of cells in a
cluster that are within distance cutoff
from another cluster

Target cluster
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size of the circle corresponds to how many
datasets are in supercluster

edge width represents frequency of association
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Knowledge graph analysis identified two distinct

superclusters, 21 and 22, representing different hepatocyte populations.
UMAP clustering of cells from these superclusters shows a clear
separation, underscoring their distinct biological

iIdentities. ALB expression, a well-established hepatocyte marker,

Resolution of cell type ontologies and annotations may
be insufficient to differentiate cells. For example, a
number of different cell clusters are mapped to single cell
type "hepatocyte" across datasets. The knowledge
graph establishes clear connections between hepatocyte
subpopulations across different datasets, enabling more
biologically relevant analyses.
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confirms the hepatocytic nature of the cells in both clusters.

Differential gene expression (DGE) analysis further reveals specific
genes distinguishing superclusters 21 and 22. Notably, transcription
factors RORA and ZBTB20 are upregulated in supercluster 21, with
RORA involved in liver metabolism and circadian regulation, and
ZBTB20 playing a role in hepatocyte differentiation and liver function.

- cellular protein metabolic process (G0O:0044267)
ubiquitin-dependent protein catabolic process (GO:0006511)
- protein ubiquitination (GO:0016567)
- protein polyubiquitination (GO:0000209)
- proteasome-mediated ubiquitin-dependent protein catabolic process (G0O:0043161)

GSEA analysis highlights metabolic and ubiquitination processes as key |20
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