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SUMMARY
Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for
extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC
subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic
analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133
and identify four subsetswith general concordance topreviously reportedSCLCsubtypes (SCLC-A, -N, -P, and
-I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine
(NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The
NEtumorswith low tumor-associatedmacrophage (TAM)buthighT-effector signalsdemonstrate longeroverall
survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector
signal. Our study offers a clinically relevant approach to discriminate SCLCpatients likely benefittingmost from
immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.
INTRODUCTION

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine

malignancy that accounts for approximately 15% of all lung can-

cers.1–3 SCLC is usually classified into two stages: limited-stage

(LS)-SCLC and extensive-stage (ES)-SCLC,4 and it is estimated

that approximately 70% of patients have ES-SCLC at the time of

diagnosis.5 The long-term prognosis of patients with ES-SCLC is

poor. While the disease is responsive to chemotherapy, the

relapse rate is high, with over 90% of patients with metastatic

disease progressing within two years of treatment.

Until recently, the standard first-line treatment for patients with

ES-SCLC was carboplatin or cisplatin and etoposide chemo-
therapy.6 With the addition of PD-L1/PD-1 (PD-(L)1) blockade

to traditional chemotherapy, improvements in overall survival

(OS) and progression-free survival (PFS) have been observed

in ES-SCLC, as demonstrated by results from global, random-

ized, phase 3 clinical trials in all-comer populations, such

as IMpower1337,8 and CASPIAN.9,10 Based on results from

IMpower133, atezolizumab in combination with carboplatin

and etoposide (CE) was the first immune checkpoint inhibitor

approved for first-line treatment of ES-SCLC,7,8 shifting the

treatment paradigm in this disease area. Moreover, the atezoli-

zumab arm of SKYSCRAPER-02 demonstrated similar results

to IMpower133, affirming its continued use as a standard of

care.11
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In general, SCLC tumors are considered immunological de-

serts with low major histocompatibility complex expression,

and the tumor cells have low PD-L1 expression, potentially

contributing to the relatively modest improvement observed

with immunotherapy plus platinum chemotherapy.8,12 Therefore,

a better understanding of the molecular features of SCLC that

are associated with response to therapy is necessary to person-

alize therapeutic strategies.

Based on multiple lines of evidence, including primary human

cancers, xenografts, cancer cell lines, and genetically engi-

neered mouse models, the expression of three key transcription

factors appears to be associated with specific molecular sub-

types of SCLC: achaete-scute homolog 1 (ASCL1), neurogenic

differentiation factor 1 (NEUROD1), and POU class 2 homeobox

3 (POU2F3).13–17 Formerly, the consensus within the SCLC

research field was that SCLC cellular subtypes were either

neuroendocrine (NE, 70%) or non-neuroendocrine (non-NE,

30%).14,15 Recently, neuroendocrine SCLC tumors were further

molecularly characterized and designated as the SCLC-A sub-

type (ASCL1 positive) and the SCLC-N subtype (NEUROD1 pos-

itive).12,16 Two additional subtypes, the inflamed subtype

(SCLC-I) and the POU2F3 subtype (SCLC-P) also have been

described.12,16–18 The SCLC-I subtype displays epithelial-

mesenchymal transition (EMT) and an inflamed phenotype,

with high expression of genes related to human leukocyte anti-

gens (HLAs), interferon-g activation, and immune checkpoints,

consistent with the association between EMT and immune-

related gene expression.12 The SCLC-P subtype, driven by the

transcription factor POU2F3, has been described as a major

non-neuroendocrine subtype, as well as having some inflamma-

tory features.12,16

The limited availability of SCLC patient samples has hampered

deep phenotyping of SCLC. For example, SCLC was not a can-

cer type selected for profiling by The Cancer Genome Atlas.19

However, the application of non-negative matrix factorization

(NMF) to publicly available RNA sequencing (RNA-seq) data20

has yielded significant insights into the SCLC subtypes.12 Trans-

ferring these specific classifications to IMpower133 demon-

strates that the SCLC-I subtype may have the longest OS with

atezolizumab in combination with CE, but each subtype

(SCLC-A, -N, -P, and -I) benefits from first-line treatment with

immunotherapy in combination with CE.12,21 The data suggest

there are subgroups within these SCLC types that need to be

identified.

In the current study, we applied NMF to patient tumor samples

from the IMpower133 trial, which contains a significantly larger

dataset than prior independent analyses of SCLC cohorts, to

identify and characterize cellular subsets of SCLC and further

refine previously described subtypes.12,16 Importantly, we define

two inflamed subsets with distinct clinical outcomes to atezolizu-

mab plus CE therapy dependent on the balance of T-effector to

tumor-associated macrophage (TAM) infiltration.

RESULTS

NMF-defined subsets in IMpower133 have distinct
clinical outcomes
To identify SCLC subsets using an unbiased approach, de novo

NMF was employed22 using 271 patient samples from the
2 Cancer Cell 42, 1–15, March 11, 2024
IMpower133 trial.7,8,23 This is in contrast to Gay et al., where

NMF was utilized to identify subtypes using a discovery set of

81 LS-SCLC samples20 and samples in IMpower133 were sub-

sequently assigned to these specific subtypes using a hierarchi-

cal clustering approach of 1,300 variable genes identified in the

discovery set. To determine the optimal number of clusters of the

de novo NMF clustering on IMpower133 samples, we calculated

cophenetic correlation scores for an increasing number of clus-

ters for NMF (Figure 1A, top), which determined that k = 4 was

optimal based on the drop-off of the cophenetic correlation

from k = 4 to k = 5 aswell as the presence of well-defined clusters

in the consensus matrix (Figures 1A and S1A). Moreover, the co-

phenetic correlation was similar for k = 5–8 (Figures 1A and S1A).

Distributions of the four NMF-identified patient clusters showed

that NMF1 and NMF2 had the most patients, with 31.4% (n = 85/

271) and 32.5% (n = 88/271), respectively; while NMF3 and

NMF4 had smaller percentages of patients, with 14.4% (n =

39/271) and 21.8% (n = 59/271), respectively (Figure 1B and

Table S1).

We then characterized whether there was a correlation be-

tween different NMF subsets and clinical outcomes. The dis-

tribution of responders (complete response/partial response)

and non-responders (stable disease/progressive disease) by

best overall response in the IMpower133 RNA-seq biomarker

evaluable population (BEP) was similar to that of the overall

study population7 (Figure S1B). NMF4 had relatively fewer re-

sponders in the atezolizumab arm, while the NMF3 subset had

a somewhat increased response rate in the atezolizumab arm

compared with a reduced response rate in the placebo arm

(Figure S1B). PFS distribution in the BEP and each NMF sub-

set was relatively similar (Figure S1C). Of note, patients in

NMF3 treated with atezolizumab had the longest median

PFS (mPFS, 5.47 months), while patients in the NMF4 atezo-

lizumab-treated subset demonstrated the shortest (mPFS,

4.22 months) (Figure S1C). Comparing the OS distribution

of the different NMF subsets demonstrated that NMF1 (me-

dian OS [mOS], atezolizumab arm: 11.14 months, placebo

arm: 9.65 months) and NMF2 (mOS, atezolizumab arm:

10.84 months, placebo arm: 10.02 months) exhibited similar

results to the BEP (mOS, atezolizumab arm: 11.37 months,

placebo arm: 9.85 months) (Figures 1C–1F). In contrast,

NMF3 and NMF4 had markedly distinct outcomes from the

other groups (Figures 1G and 1H). The NMF3 subset had a

near doubling of mOS with atezolizumab plus CE (mOS,

16.37 months) compared with placebo plus CE (mOS,

8.63 months), while the NMF4 demonstrated limited benefit

compared with placebo plus CE (mOS, 9.19 vs. 10.11 months,

respectively) (Figures 1C and 1H). The Kaplan-Meier curves

further demonstrated the longer OS in the atezolizumab arm

of the NMF3 patients (HR, 0.45 [95% CI, 0.22–0.89])

compared with the placebo arm (Figure 1G). We previously

demonstrated that the SCLC-P subtype had poor prog-

nosis12,21 and therefore assessed if this subtype was respon-

sible for any poor outcome associations. The removal of

SCLC-P tumors from the analyses did not change the

outcome associations observed (Figures S1D–S1E). In total,

using the largest samples set to date for de novo NMF on

samples from the IMpower133 trial, we identified patient sub-

groups with distinct clinical outcomes.
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Figure 1. De novo NMF of IMpower133 pre-treatment tumor transcriptomes

(A) Cophenetic correlation for increasing number of NMF-defined clusters (top) and consensus matrix for optimal number of clusters (bottom, k = 4).

(B) Relative proportion of each de novo NMF-identified subset in IMpower133.

(C) Forest plot depicting the overall survival hazard ratio (OS HR) for atezolizumab+carboplatin/etoposide (Atezo+CE) versus placebo+CE in the biomarker

evaluable population (BEP) and each subset. Shown on the right are the median OS for each group, and error bars represent 95% confidence intervals.

(D–H) Kaplan-Meier curves of OS in patients treated with atezolizumab+CE versus placebo+CE in (D) BEP, (E) NMF1, (F) NMF2, (G) NMF3, and (H) NMF4 subsets.

OS hazard ratios (HR) and 95% confidence intervals are shown for each subset. Also see Figure S1 and Table S1.
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Tumor-intrinsic and microenvironmental determinants
of SCLC subsets
To begin identifying molecular distinctions between the four

NMF subsets, we performed differential gene expression ana-
lyses and gene set analyses comparing each subset to the com-

bination of all other subsets and also to each other (Table S2 and

Figure 2A). For gene set analyses, we first considered major

components of the tumor microenvironment using curated
Cancer Cell 42, 1–15, March 11, 2024 3
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Figure 2. Determinants of de novo NMF-defined subsets

(A) One versus all (e.g., NMF1 vs. Others) and pairwise (e.g., NMF1 vs. NMF2) gene set analyses applying gene signatures corresponding to neuroendocrine

SCLC (NE), epithelial-to-mesenchymal transition (EMT), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD14+ monocytes

(CD14), CD16+ monocytes (CD16), B cells, plasma cells (Plasma), T cells, T-effector cells (T-eff), NK cells, T regulatory cells (Treg), neutrophils (Neut), Th1 cells

(Th1), Th2 cells (Th2), and antigen presentation machinery (APM). Dotted red lines indicate FDR p value = 0.05 while the sign on the x-axis denotes the direction

where positive values indicate enrichment in NMF named in column while negative values indicate enrichment in NMF named in the row. For one versus all

comparison, negative values indicate enrichment in the other. Bars extending beyond the axis limits indicate p values of 0 (log(P-val) of Infinity). Colors denote

FDR p value <0.05 matching the color of the specific subset where the gene signature is enriched, dark gray indicates enrichment in the other in a one versus all

comparison, and light gray indicates FDR p R 0.05.

(B) Boxplots indicating the gene expression of key transcription factors across subsets where each dot represents a unique patient sample. Asterisks denote FDR

p values based on differential gene expression analysis of the pairwise comparisons between subsets (Table S2). * FDR p < 0.05, ** FDR p < 0.01, *** FDR

p < 0.001, NS FDR p > 0.05. Also see Figure S2, Tables S2 and S3.
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gene signatures from several sources24,25 as well as an SCLC

neuroendocrine gene signature17 (Figures 2A and Table S3).

Overall, this demonstrated that NMF1, NMF2, and NMF3 had

strong NE features, while NMF4 appeared non-NE. NMF3 and

NMF4 both have features of enhanced inflammation and antigen

presentation machinery when compared to NMF1 and NMF2,

suggesting NMF1 and NMF2 are relatively immune desert sub-

sets while NMF3 and NMF4 are relatively immune-inflamed sub-

sets (Figure 2A).

As part of the differential gene expression analysis, we exam-

ined each subset’s transcription factor expression profiles (Fig-

ure 2B and Table S2). NMF2 and NMF3 had the highest

ASCL1 expression, and NMF1 had a uniquely high NEUROD1

expression (Figure 2B). Prior classification of SCLC-I tumors

noted low ASCL1 expression, suggesting a more neutral sub-

type. However, our analyses suggest that although NMF3 and

NMF4 both show inflamed features, only NMF4 has low ASCL1

expression, while NMF3 retains high ASCL1 expression (Fig-

ure 2B). POU2F3was only expressed in a subset of NMF4, while

other drivers of non-NE phenotype, such as RE1-silencing tran-

scription factor (REST) and MYC, were elevated in more NMF4

tumors compared to other NMF subsets. YAP1 was similarly

elevated in NMF3 andNMF4 and did not uniquely define a subset

(Figure 2B). These findings confirm that the previously identified

SCLC-P subset may be a portion of a broader non-NE subset,

suggesting that non-neuroendocrine SCLC tumors exhibit

similar immune landscape and clinical outcomes despite being

driven by distinct non-NE drivers.

To uncover potential tumor-intrinsic cell state differences

between the de novo NMF-defined subsets, we investigated

hallmark gene sets.26 In pairwise comparisons, NMF1 showed

evidence of enhanced proliferation and was associated with

DNA repair, while NMF3 and NMF4 appeared to be the most

mesenchymal (Figure 3A). As expected, based on MYC expres-

sion, NMF4 had elevated MYC target gene expression (Fig-

ure 3A). We also investigated previously identified commonly

mutated genes in a subset of cases with available whole-exome

sequencing20 and found they were not differentially mutated in

each subset (Figure S2A). Copy number analyses of TP53 and

RB1 showed likely loss in cases where a nonsynonymous muta-

tion did not appear, which suggested inactivation (Figure S2A).

Therefore, genotyping did not inform the molecular subset.

NOTCH3 mutations were somewhat enriched in NMF3 tumors;

however, these mutations did not confer differential hallmark

NOTCH signaling (Figures S2B and S2C).

While tumor mutational burden and blood tumor mutational

burden (bTMB) have been demonstrated to have potential

predictive value for immune checkpoint blockade in several can-

cer indications, bTMB was not associated with PFS or OS in

IMpower133.7 Here, we also found that the NMF-identified sub-

sets in IMpower133 did not have different bTMB (Figure S2D).

We further compared specific tumor microenvironment (TME)

features of the NMF subsets. Individual genes and gene sets

corresponding to TME cell types (Figure 3B and Table S2)

demonstrated that compared with NMF1 and NMF2, NMF3

and NMF4 showed similarly elevated signature scores for

T-effector cells, immune stimulatory molecules, immune inhibi-

tory checkpoints, lymphocytes, total myeloid cells, endothelial

cells, and cancer-associated fibroblasts. Although antigen pre-
sentation machinery (APM) gene expression was recently identi-

fied as a key driver of immune checkpoint blockade therapy

benefit,27,28 stratification of IMpower133 patients using the

same APM gene signature from Rudin et al., 2023 did not

show significant association with PFS (HR = 1.28 [0.89–1.83])

or OS (HR = 1.2 [0.81–1.77]), likely due to high expression of

APM genes in the NMF4 subset which do not benefit from atezo-

lizumab (Figures S3A–S3C). Similarly, immune cell PD-L1

expression, as measured by immunohistochemistry (IHC), was

elevated in the two infiltrated subsets (NMF3 and NMF4)

compared with the cold subsets (Figure 3C). These data further

support that NMF1 and NMF2 can be broadly characterized

as immune-cold SCLC and NMF3 and NMF4 as immune-infil-

trated SCLC. In total, we identified four subsets with potential

therapeutic relevance that are defined by their cell-intrinsic

and -extrinsic features. These subsets both recapitulate and

suggest heterogeneity within previously reported SCLC features

(Figure 3D).

Heterogeneity within established SCLC molecular
subtypes
Based on the distribution of known gene expression pathways

and prior subtyping classifications, the NMF-identified clusters

could be characterized broadly into SCLC-N-enriched, neuroen-

docrine NEUROD1-driven (SCLC-N; NMF1); SCLC-A-enriched,

neuroendocrine ASCL1-driven (SCLC-A; NMF2); SCLC-I and

SCLC-A-enriched, neuroendocrine inflamed (SCLC-I-NE;

NMF3); and SCLC-P and SCLC-I-enriched, non-neuroendocrine

inflamed (SCLC-I-nonNE; NMF4) (Figure 4A). Prior classification

schema identified one inflamed subgroup (SCLC-I), and tenta-

tively identified a second inflamed subgroup SCLC-P (character-

ized by higher POU2F3 levels).12,16,18 Our analysis characterizes

two distinct inflamed clusters with the hallmarks of immune cell

inflammation and showed that both an NE and a nonNE sub-

group were enriched for T cells, B/plasma cells, checkpoint mol-

ecules, and APM (Figures 3B–3D and 4A). We compared the

distribution of prior subtyping approaches using the single tran-

scription factors (TF subtypes)16 or the NMF-based subtyping

approach (MDACC subtypes)12 defined for LS-SCLC tumors

from a smaller public dataset (George et al., 2015) (Figures S4,

4B, and 4C). Few tumors were classified as a YAP1 subtype by

the TF approach; YAP1 expression was seen across subsets

and was associated with EMT-related gene programs, which

confirmed prior studies that suggested it does not exclusively

define a subtype.12,29,30 The SCLC-N subset contained almost

all previously identified NEUROD1 tumors by either approach,

the SCLC-A and SCLC-I-NE subsets were both classified as

ASCL1 by the TF approach, and the SCLC-I-nonNE subgroup

contained the POU2F3 tumors using either approach, while the

recently identified SCLC-I tumors were split between the

SCLC-I-NE and SCLC-I-nonNE subsets. These data suggest

that SCLC molecular subsets can be distinguished by both tran-

scription factor drivers and immune infiltration status. Previously

reported subtypes can be split into immune-cold and immune-

enriched SCLC, where immune-enriched SCLC can be further

delineated into SCLC-I-NE and SCLC-I-nonNE based on cell-

intrinsic features (Figure 4D). In total, these data recapitulate

and extend prior subtyping classifications by uncovering im-

mune heterogeneity within subsets.
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Figure 3. Cell-intrinsic and tumor microenvironmental determinants of de novo NMF-defined subsets

(A) Heatmap summarizing Hallmark gene signatures that were significantly enriched in at least one NMF subset by gene set analysis. Shown is the mean gene

signature score per NMF subset.

(B) Heatmap of Z-scored gene signature scores corresponding to cell types expected to be present in the tumor microenvironment (TME). Each column rep-

resents a unique patient sample, and samples are grouped and hierarchically clustered within each subset. MDSCs, myeloid-derived suppressor cells.

(C) Fraction of patients in each NMF subset binned by percentage of pathologist-identified PD-L1-positive immune cells by immunohistochemistry (IHC).

(D) Heatmap of Z-scored genes corresponding to cell-intrinsic and TME features. Each column represents a unique patient sample, and samples are grouped and

hierarchically clustered within each subset. Also see Figure S3.
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Key features of IMpower133 NMF-defined subsets
replicate in additional datasets
To examine the generalizability of our NMF-defined subsets, we

examined key features in additional datasets and data types.

First, we explored the largest available single-cell RNA-seq

(scRNA-seq) atlas of human SCLC.31 Here, we focused on tumor

cell gene expression patterns. When examining expression of

key transcription factors and APM, we find both NE and non-

NE samples with high levels of APM gene expression (Figure 5A).
6 Cancer Cell 42, 1–15, March 11, 2024
Querying both the key transcription factors and APM, we can

classify most samples into the NMF-defined subsets from

IMpower133 (Figure 5B), with a minority of samples being un-

classified. Hierarchical clustering of single cancer cells using

key transcription factors and APM also recovers similar subsets

of single cells (Figure S5), where SCLC-A and N-like cells have

high expression of ASCL1 or NEUROD1 but relatively low

APM, SCLC-I-NE cells have high ASCL1 expression and uni-

formly high APM expression, and SCLC-I-nonNE-like cells are
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Figure 4. Comparison of IMpower133 NMF-defined subsets to established SCLC subtypes

(A) Radial plot summarizing the defining gene and feature signatures of each de novo NMF-defined subset described in the prior figures. The length of each bar

corresponds to the relative enrichment (Z-score across subsets) of the mean value for each feature. Based on features, NMF1 is NEUROD1-driven and immune

cold (SCLC-N), NMF2 is ASCL1-driven and immune cold (SCLC-A), NMF3 is ASCL1-driven and immune hot (SCLC-I-NE), and NMF4 is non-neuroendocrine

(including POU2F3-driven tumors) and immune hot (SCLC-I-nNE).

(B andC) Representation of the intersection between de novo IMpower133 NMF-defined subsets and subsets previously established utilizing unbiased clustering

from LS-SCLC RNA-seq (MDACC Subtypes12). Shown are the fraction of patients overlapping between each MDACC subtype and the de novo IMpower133

NMF-defined subsets.

(D) Heterogeneity of immune-infiltrated SCLC tumors within previously reported (MDACC) subtypes. Immune-infiltrated tumors in each previously reported

subtype are classified as SCLC-I-NE or SCLC-I-nonNE. Also see Figure S4.
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enriched for REST and POU2F3 expression and have uniformly

high APM expression (Figure S5).

We took a similar hierarchical clustering approach to human

SCLC cell line bulk RNA-seq available from the Cancer

Cell Line Encyclopedia (CCLE) and DepMap.32,33 Similar to

cancer cell scRNA-seq analyses, when setting k = 4, we find

subsets that recapitulate the key features of our IMpower133

NMF-defined subgroups. Crucially, there are both NE and

non-NE tumors with uniformly high APM gene expression. In

total, these data suggest that relevant tumor cell-intrinsic fea-

tures of the NMF-defined subsets are generalizable beyond

IMpower133.

Myeloid infiltration distinguishes inflamed subsets
To distinguish features that may regulate distinct clinical out-

comes specifically in the inflamed subsets, we examined the dif-

ferential gene expression and gene set analysis between SCLC-
I-NE and SCLC-I-nonNE tumors (Table S2, Figures 6A and 6B).

As previously defined, NE and nonNE genes differentially ex-

pressed between these subsets (Figure 6A). We also examined

gene sets corresponding to cell types that may make up the

SCLC TME andmay be differentially associated with each tumor

(Figure 6B). Interestingly, we found that while levels of lympho-

cytes were largely similar, signals of TAMs, which are immune-

suppressive macrophages, and the chemokines that may recruit

them, were highly enriched in SCLC-I-nonNE tumors compared

with SCLC-I-NE tumors (Figure 6B). To further characterize

these tumors, we delineated tumors as T-effector (T-eff) cell-

high/low and TAM-high/low based on the median cohort-wide

expression for these gene signatures. Compared with the

non-inflamed subsets (SCLC-N and SCLC-A), the inflamed

SCLC-I-NE and SCLC-I-nonNE subsets were both enriched

for T-eff-high tumors (z70%), but the balance of T-eff/TAM sig-

nals between the inflamed subsets was markedly different
Cancer Cell 42, 1–15, March 11, 2024 7
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Figure 5. Key features of NMF-defined subsets generalize to other datasets

(A) Non-batch corrected UMAP dimensionality reduction of SCLC cancer cells from previously published human SCLC scRNA-seq atlas.31 In the top left panel,

each cell (dot) is colored by the sample it originated from, while the remaining panels depict normalized expression of key subset-defining transcription factors

and TAP1 (representative APM gene).

(B) Bubble plots showing percentage of cells expressing the indicated gene (size) as well as the normalized expression of each indicated gene (color) for cancer

cells within each sample from the human SCLC scRNA-seq samples shown in (A). Samples are binned into de novoNMF-like subsets based on expression of key

NMF subset marker genes highlighted in the earlier figures. Samples without clear enrichment of de novo NMF subset-like transcription factor expression were

labeled as Unassigned.

(C) Gene expression heatmap of human SCLC cell lines from CCLE/DepMap32,33 with k = 4 hierarchical clustering for SCLC subset-defining transcription factors

and APM genes. Clusters are named based on similarity of key gene expression patterns to IMpower133 NMF-defined subsets. Also see Figure S5.
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Figure 6. Tumor-associated macrophage signals distinguish inflamed subsets

(A) Volcano plot depicting differentially expressed genes (FDR p < 0.05) comparing SCLC-I-nonNE and SCLC-I-NE. Highlighted are genes related to neuro-

endocrine (NE), non-neuroendocrine (nonNE) phenotype, tumor-associated macrophages (TAM), and T cells.

(B) Gene set analysis of significantly different (FDR p < 0.05) tumor and immune-related gene signatures comparing SCLC-I-nonNE and SCLC-I-NE. Sign on the

x axis denotes the direction where negative values indicate enrichment in SCLC-I-nonNE and positive values indicate enrichment in SCLC-I-NE.

(C) Overlap of T-effector (T-eff) and TAM-high and -low population (defined by cohort-wide median split for each signature) within each subset.

(D) Forest plot depicting the OS hazard ratio for atezolizumab (atezo)+CE versus placebo+CE in biomarker evaluable population (BEP) and each T-eff/TAM-high

and -low subset. Data represent median OS ±95% confidence interval.

(E–F) Kaplan-Meier curves of OS in patients treated with atezolizumab+CE (Atezo) versus placebo+CE (Placebo) in (E) T-eff-high/TAM-high tumors, and (F) T-eff-

high/TAM-low tumors. OS hazard ratios (HR) and 95% confidence intervals are shown for each subset. Also see Figure S6.
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(Figure 6C). SCLC-I-nonNE tumors that were T-eff-high were

almost exclusively also TAM-high, while those that were

SCLC-I-NE and T-eff-high were balanced between TAM-high
and TAM-low (Figure 6C). To determine whether these signals

might correlate with the differential clinical outcomes of atezoli-

zumab plus CE versus placebo plus CE in the inflamed subsets,
Cancer Cell 42, 1–15, March 11, 2024 9
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we examined the outcomes in the T-eff/TAM subsets. Strikingly,

T-eff-high/TAM-low tumors showed additional OS benefit of ate-

zolizumab plus CE compared with all other groups (Figures 6D,

S6A, and S6B). Within T-eff-high/TAM-high tumors, which

were enriched in SCLC-I-nonNE tumors, atezolizumab plus

CE-treated tumors showed similar OS compared to placebo

plus CE (HR, 0.85 [95% CI, 0.53–1.37]) (Figure 6E). Within

T-eff-high/TAM-low tumors, which were enriched in the SCLC-

I-NE subset, atezolizumab plus CE-treated tumors showed

markedly longer OS than placebo plus CE-treated tumors (HR,

0.26 [95%CI, 0.12–0.57]) (Figure 6F). In total, these data suggest

that differential TAM infiltration may be a clinically relevant deter-

minant of SCLC subsets.

Non-NE signaling is associated with enhanced TAM
infiltration
To understand the relative immune cell composition of SCLC

tumors beyond bulk transcriptomes, we performed multiplex

immunofluorescence on a subset of samples (n = 19) from

IMpower133 with available tissue for CD3+/CD8+ T cells,

CD3+/CD8- T cells, CD68+/CD163- macrophages, and CD68+/

CD163+ macrophages (Figures 7A, 7B, and S7A). Overall, within

the pathologist-annotated tumor area, the predominant non-

tumor cell type was CD68+/CD163- macrophages (mean =

15.8%, range 6.3%–42.7%) (Figure 7B). As previously demon-

strated,34 T cells were relatively rare within the tumor-annotated

regions (mean = 0.6%, range 0.0%–8.0%). Similarly, CD68+/

CD163+macrophageswere largely absent from the tumor-anno-

tated regions (Figure 7B). In total, thesedata suggest thatCD68+/

CD163- macrophages are a key component of the ES-SCLC

microenvironment, but additional deep phenotyping is required

to evaluate specific markers/features of these TAMs.

To understand which cell-intrinsic signals may regulate TAM

infiltration in inflamed tumors, we assessed which of these fea-

tures best correlated with TAM signals in T-eff-high tumors in

IMpower133. We found that REST and MYC expression were

positively correlated with markers of myeloid infiltration (Fig-

ure 7C). To further validate this finding using an independent

dataset, additional LS/ES-SCLC samples (n = 58) were pro-

cured and analyzed by RNA-seq in order to compare differen-

tially expressed genes between TAM-high and TAM-low tumors

within the T-eff-high subset (n = 29) (Figure 7D). We found that

relative T cell signals were not distinct in this subgroup (Fig-

ure 7D), but REST was prominently differentially expressed,

while MYC was not (Figures 7E and S7B). We further explored

whether specific myeloid-related chemokines and cytokines

may be upregulated in nonNE tumors by examining differen-

tially expressed genes between NE and nonNE tumors in

IMpower133. As expected, due to the high TAM-related signals

in IMpower133, we find concomitant elevation of myeloid-

related chemokines and cytokines (Figure S7C). To test if this

may be related to tumor cell-intrinsic signals, we again exam-

ined the bulk RNA-seq dataset of SCLC cell lines available in

CCLE/DepMap.32,33 Here, we find that REST, but not MYC

expression, is highly correlated with several myeloid-related

chemokines, such as CSF1 (Figure S7D). In total, these data

suggest a potential role for cell-intrinsic nonNE signaling in re-

cruiting TAMs to the SCLC tumor microenvironment that re-

quires further investigation.
10 Cancer Cell 42, 1–15, March 11, 2024
DISCUSSION

Ourdata show that immune-infiltratedSCLCcanbecharacterized

into distinct subsets based on both tumor and immune features

and that thebalance of these features at baseline is a key determi-

nant of differential outcomes to immune checkpoint blockade.

Specifically, tumors with low TAM but high T-eff signals had an

NE phenotype and demonstrated longer overall survival with

PD-L1 blockade plus CE versus CE alone than did tumors with

high TAM and high T-eff signal, which were enriched in the non-

NE subset. Until recently, it was thought that all SCLC tumors

were neuroendocrine, but the discovery of non-neuroendocrine

variants, either lacking ASCL1/NEUROD1 expression or driven

by POU2F3, prompted re-evaluation of SCLC classifica-

tion.12,16,18,35 Non-neuroendocrine SCLC was initially described

as a single subtype.17,35 However, molecular characterization

recently defined two unique non-neuroendocrine SCLC subtypes

(SCLC-I and SCLC-P).12,18 SCLC-P expresses high levels of the

transcription factor POU2F3, and SCLC-I is characterized by

EMT, an inflammatory phenotype, and high expression of genes

related to HLAs, interferon-g activation, and immune check-

points.12 More recently, biological subsets of SCLC have been

examined through the lens of molecular archetyping, wherein

SCLC tumors exist on a continuum across multiple archetype

vertices; this approach highlights further the inter- and intra-tu-

moral heterogeneity observed across SCLC patients.36 Despite

this inter- and intra-tumoral heterogeneity seen inSCLC,however,

ES-SCLC patients are treated in an all-comer approach and

receive atezolizumab plus CE as a standard of care.

To better understand the SCLCmolecular subsets relevant for

clinical outcomes to immune checkpoint blockade, we applied

de novo NMF on IMpower133 RNA-seq data to delineate four

subsets (SCLC-N, SCLC-A, SCLC-I-NE, and SCLC-I-nonNE)

that demonstrate concordance with prior classification ap-

proaches on smaller datasets12,16,17 but uncover additional

heterogeneity in the immune compartment. Similar to previous

SCLC classifications, these subsets were categorized into

neuroendocrine (SCLC-N, SCLC-A, and SCLC-I-NE) and non-

neuroendocrine (SCLC-I-nonNE) phenotypes.12 In contrast to

previous work, we found two inflamed subsets which showed

differential neuroendocrine phenotypes: the neuroendocrine

SCLC-I-NE subset and the non-neuroendocrine SCLC-I-

nonNE subset. The SCLC-I-nonNE subset expressed higher

levels of non-neuroendocrine transcription factors, such as

POU2F3, but did not exclusively contain POU2F3-driven tumors,

while the SCLC-I-NE subset expressed the transcription factors

ASCL1 and/or NEUROD1.

Most significantly, SCLC molecular subsets defined by this

work showed differential clinical outcomes to immune check-

point blockade. Although SCLC-I-NE and SCLC-I-nonNE sub-

sets were both characterized as immune-inflamed subsets and

thus would be predicted to show improved response to immuno-

therapy, only SCLC-I-NE showed significant benefit of atezolizu-

mab compared to placebo while SCLC-I-nonNE patients

showed minimal benefit from atezolizumab over placebo treat-

ment. Interestingly, some benefit from atezolizumab plus CE is

still observed in the immune cold subsets (SCLC-A and

SCLC-N), which could be partially explained by the presence

of T-eff high/TAM low samples in these subsets, but the
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Figure 7. Cell-intrinsic factors may regulate TAM infiltration

(A) H&E (top left), corresponding multiplex immunofluorescence (mIF) for CD68 and DAPI (top right), single channel CD68 (bottom left), and corresponding cell

segmentation tissue map incorporating all the phenotypes assayed (bottom right) for a pathologist-annotated tumor region of an average representative SCLC

sample from IMpower133. DAPI-segmented cells that were not classified as CD3+/CD8-, CD3+/CD8+, CD68+/CD163+, or CD68+/CD163- were classified as

Other. Pathologist review indicated the Other category as predominantly SCLC tumor cells.

(B) Fraction of cells belonging to each mIF-identified phenotype within pathologist-annotated tumor regions from the SCLC sample assayed from IMpower133

(n = 19).

(C) Correlation matrix of SCLC-related genes and TAM signature in the subset of tumors with high T-eff signature score (>median). Rows are ordered based on

positive to negative Spearman R compared to TAM signature.

(D) Volcano plot depicting differentially expressed genes (FDR p < 0.05) between samples with high TAM-signature scores (n = 14) versus low TAM-signature

scores (n = 15) within the T-eff-high tumors in an independently procured SCLC bulk RNA-seq dataset.

(E) REST expression in TAM-high versus TAM-low tumors within T-eff-high tumors in the independent SCLC dataset. Also see Figure S7.
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mechanisms underlying this response are still unknown and

require further investigation. Thus, our approach uncovers sub-

sets that are defined not only by distinct biological pathways

driving the tumor phenotype, but also by differential clinical out-

comes to immune checkpoint blockade.
Within the immune-enriched subsets, the balance of TAMs

and T-eff delineated the response outcome, where patients ex-

hibiting low TAM/T-eff ratios had significantly longer OSwith ate-

zolizumab compared to placebo. The four NMF subsets con-

tained patient subgroups with different ratios of TAMs and
Cancer Cell 42, 1–15, March 11, 2024 11
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T-eff, whichmay point to a potential tumor-intrinsic control of the

immune compartment within SCLC. While we found the expres-

sion of nonNE markers to be strongly correlated with TAM sig-

nals in T-eff high tumors, validation using an independent data-

set implicated that REST, more so than MYC, is more strongly

associated with TAM signals in T-eff-high tumors. To understand

which cell-intrinsic programsmay be driving high TAM infiltration

in T-eff-high tumors, we analyzed publicly available bulk

RNA-seq data of SCLC cell lines and demonstrated that REST

expression is strongly correlated with expression of several

key myeloid chemokines and cytokines, such as CSF1. While

our work suggests a potential link between nonNE phenotype

of cancer cells and immunosuppressive TAM phenotype, further

investigation is needed to elucidate if and how SCLC cells

directly influence the tumor-immune microenvironment.

Recently, it wasdemonstrated thatbiomarker-selected studies

in ES-SCLC are feasible, establishing the basis for investigating

novel treatment strategies in selected ES-SCLC populations.37

Given that we associate T-eff versus TAMbalance andNE versus

nonNE tumor pathology as potential predictors of outcomes

to immune checkpoint blockade, further investigation and valida-

tion are required to evaluate the clinical actionability of these find-

ings. The extent of TAM, T cell, and NE versus nonNE phenotype

can be assessed by routine IHC/immunofluorescence, but spe-

cific markers, thresholds, and validation of their association

with clinical outcomes are required. Using these cell-intrinsic

and TME features that we show to be associatedwith clinical out-

comes could form the basis for patient selection or stratification

strategies to assess specific combinatorial strategies in the

future.

These subsets have significant clinical implications for investi-

gational therapeutics. For example, delta-like ligand 3 (DLL3)

expression is highest in the NE subsets (SCLC-A, SCLC-N,

and SCLC-I-NE); therefore, use of DLL3 targeting approaches

could be tailored to these subsets. For example, non-inflamed

neuroendocrine subsets SCLC-A and SCLC-N may be good

candidates for DNA damage response-targeting agents, such

as DLL3 antibody-drug conjugate therapy.38 Whereas, T cell en-

gager DLL3 strategies may have the greatest benefit in the

SCLC-I-NE subset, while DLL3 targeting approaches should

be avoided in the SCLC-I-nonNE subset with minimal DLL3

expression.

When considering therapies for the SCLC-I-nonNE and

SCLC-I-NE subsets, the SCLC-I-nonNE subset might benefit

from myeloid repolarization agents. In myeloid cell repolariza-

tion, TAMs and myeloid-derived suppressor cells are reprog-

rammed from an immunosuppressive to pro-inflammatory

phenotype by stimulation of innate immune pattern recognition

receptors, such as TLR7 and TLR8.39 Since REST expression

was higher in the SCLC-I-nonNE subset than in the other

NMF subsets, another possibility as a potential therapeutic

strategy for the SCLC-I-nonNE subset would be to focus a

therapy on REST target genes. REST functions as the tran-

scriptional repressor of neuronal genes in non-neuronal cells

to restrict the expression of neuronal genes to the nervous sys-

tem.40 Given the associations we observed between nonNE

expression and TAM infiltration in two separate SCLC patient

cohorts, targeting the nonNE/myeloid axis in SCLC-I-nonNE tu-

mors may be beneficial.
12 Cancer Cell 42, 1–15, March 11, 2024
The SCLC-I-NE subset had a larger proportion of patients with

high T-eff and low TAM levels compared with other NMF sub-

sets. Therefore, patients in this group may be responsive to

blockade of additional immune checkpoints or targeting of T reg-

ulatory cells (Tregs). Reducing the activity of immune-inhibiting

Tregs could especially benefit the SCLC-I-NE patients who

have high levels of immune-activating T-eff and low levels of

immune inhibitory TAMs in their tumors.

The results of our study demonstrate the value of deep pheno-

typing of SCLC to understand response and resistance to

current and emerging therapeutic strategies. Although these

findings are supported by unbiased profiling of human SCLC in

the context of a large phase 3 randomized clinical trial, there

are limitations. This study contains the largest collection of

SCLC tumor transcriptomes; however, the results presented

here require prospective validation in additional randomized clin-

ical trials. Furthermore, while the biological findings are robust

acrossmultiple independent datasets, the associationswith clin-

ical outcomes are still limited due to small sample size, as 271

patients were divided into 2 treatment arms, each with four mo-

lecular subsets. Therefore, as additional SCLC data continue

to emerge, we expect the heterogeneous picture of SCLC to

continue to evolve and refine.

In conclusion, our study further categorizes the heterogeneity

seen in SCLC into four distinct subsets that are defined by both

cell-intrinsic and cell-extrinsic factors and clinical response to

immune checkpoint blockade. We highlight subsets such as

SCLC-I-nonNE, which benefit minimally from immune check-

point blockade despite showing high immune infiltration, and

SCLC-I-NE, which retain NE features and concomitant immune

infiltration. The delineation of SCLC heterogeneity offers a clini-

cally relevant approach to distinguish SCLC patients most likely

to benefit from current immunotherapeutic approaches, and as

new therapeutic strategies emerge, provides a roadmap for

personalization of therapy for SCLC.
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Statsenko, G., Hochmair, M.J., Özg€uro�glu, M., Ji, J.H., et al. (2019).

Durvalumab plus platinum–etoposide versus platinum–etoposide in
Cancer Cell 42, 1–15, March 11, 2024 13

https://doi.org/10.1016/j.ccell.2024.01.010
https://doi.org/10.1016/j.ccell.2024.01.010
https://doi.org/10.1093/annonc/mdt178
https://doi.org/10.1038/nrc.2017.87
https://doi.org/10.1016/s0140-6736(11)60165-7
https://doi.org/10.1016/s0140-6736(11)60165-7
https://doi.org/10.1016/j.jtho.2022.02.008
https://doi.org/10.1016/j.jtho.2022.02.008
https://doi.org/10.1038/nrclinonc.2017.71
https://doi.org/10.21037/tlcr.2018.01.16
https://doi.org/10.1056/nejmoa1809064
https://doi.org/10.1056/nejmoa1809064
https://doi.org/10.1200/jco.20.01055
https://doi.org/10.1016/j.esmoop.2022.100408
https://doi.org/10.1016/j.esmoop.2022.100408


ll
Article

Please cite this article in press as: Nabet et al., Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade, Can-
cer Cell (2024), https://doi.org/10.1016/j.ccell.2024.01.010
first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a

randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939.

https://doi.org/10.1016/s0140-6736(19)32222-6.

11. Rudin, C.M., Liu, S.V., Soo, R.A., Lu, S., Hong, M.H., Lee, J.-S., Bryl, M.,

Dumoulin, D.W., Rittmeyer, A., Chiu, C.-H., et al. (2024). SKYSCRAPER-

02: Tiragolumab in Combination With Atezolizumab Plus Chemotherapy

in Untreated Extensive-Stage Small-Cell Lung Cancer. J. Clin. Oncol.

42, 324–335. https://doi.org/10.1200/jco.23.01363.

12. Gay, C.M., Stewart, C.A., Park, E.M., Diao, L., Groves, S.M., Heeke, S.,

Nabet, B.Y., Fujimoto, J., Solis, L.M., Lu, W., et al. (2021). Patterns of tran-

scription factor programs and immune pathway activation define four ma-

jor subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell

39, 346–360.e7. https://doi.org/10.1016/j.ccell.2020.12.014.

13. Cardnell, R.J., Li, L., Sen, T., Bara, R., Tong, P., Fujimoto, J., Ireland, A.S.,

Guthrie, M.R., Bheddah, S., Banerjee, U., et al. (2017). Protein expression

of TTF1 and cMYC define distinct molecular subgroups of small cell lung

cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 target-

ing, and other targeted therapies. Oncotarget 8, 73419–73432. https://doi.

org/10.18632/oncotarget.20621.

14. Carney, D.N., Gazdar, A.F., Bepler, G., Guccion, J.G., Marangos, P.J.,

Moody, T.W., Zweig, M.H., and Minna, J.D. (1985). Establishment and

identification of small cell lung cancer cell lines having classic and variant

features. Cancer Res. 45, 2913–2923.

15. Gazdar, A.F., Carney, D.N., Nau, M.M., and Minna, J.D. (1985).

Characterization of variant subclasses of cell lines derived from small

cell lung cancer having distinctive biochemical, morphological, and

growth properties. Cancer Res. 45, 2924–2930.

16. Rudin, C.M., Poirier, J.T., Byers, L.A., Dive, C., Dowlati, A., George, J.,

Heymach, J.V., Johnson, J.E., Lehman, J.M., MacPherson, D., et al.

(2019). Molecular subtypes of small cell lung cancer: a synthesis of human

and mouse model data. Nat. Rev. Cancer 19, 289–297. https://doi.org/10.

1038/s41568-019-0133-9.

17. Zhang, W., Girard, L., Zhang, Y.-A., Haruki, T., Papari-Zareei, M., Stastny,

V., Ghayee, H.K., Pacak, K., Oliver, T.G., Minna, J.D., and Gazdar, A.F.

(2018). Small cell lung cancer tumors and preclinical models display het-

erogeneity of neuroendocrine phenotypes. Transl. Lung Cancer Res. 7,

32–49. https://doi.org/10.21037/tlcr.2018.02.02.

18. Huang, Y.-H., Klingbeil, O., He, X.-Y., Wu, X.S., Arun, G., Lu, B.,

Somerville, T.D.D., Milazzo, J.P., Wilkinson, J.E., Demerdash, O.E., et al.

(2018). POU2F3 is a master regulator of a tuft cell-like variant of small

cell lung cancer. Genes Dev. 32, 915–928. https://doi.org/10.1101/gad.

314815.118.

19. Bailey, M.H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D.,

Weerasinghe, A., Colaprico, A., Wendl, M.C., Kim, J., Reardon, B., et al.

(2018). Comprehensive Characterization of Cancer Driver Genes and

Mutations. Cell 173, 371–385.e18. https://doi.org/10.1016/j.cell.2018.

02.060.

20. George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozreti�c, L., Kong, G., Leenders,

F., Lu, X., Fernández-Cuesta, L., Bosco, G., et al. (2015). Comprehensive

genomic profiles of small cell lung cancer. Nature 524, 47–53. https://doi.

org/10.1038/nature14664.

21. Liu, S.V., Mok, T.S.K., Nabet, B.Y., Mansfield, A.S., De Boer, R., Losonczy,

G., Sugawara, S., Dziadziuszko, R., Krzakowski, M., Smolin, A., et al.

(2023). Clinical and molecular characterization of long-term survivors

with extensive-stage small cell lung cancer treated with first-line atezolizu-

mab plus carboplatin and etoposide. Lung Cancer 186, 107418. https://

doi.org/10.1016/j.lungcan.2023.107418.

22. Skoulidis, F., Byers, L.A., Diao, L., Papadimitrakopoulou, V.A., Tong, P.,

Izzo, J., Behrens, C., Kadara, H., Parra, E.R., Canales, J.R., et al. (2015).

Co-occurring Genomic Alterations Define Major Subsets of KRAS-

Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles,

and Therapeutic Vulnerabilities. Cancer Discov. 5, 860–877. https://doi.

org/10.1158/2159-8290.cd-14-1236.

23. Mansfield, A.S., Ka _zarnowicz, A., Karaseva, N., Sánchez, A., De Boer, R.,

Andric, Z., Reck, M., Atagi, S., Lee, J.-S., Garassino, M., et al. (2020).
14 Cancer Cell 42, 1–15, March 11, 2024
Safety and patient-reported outcomes of atezolizumab, carboplatin, and

etoposide in extensive-stage small-cell lung cancer (IMpower133): a ran-

domized phase I/III trial. Ann. Oncol. 31, 310–317. https://doi.org/10.1016/

j.annonc.2019.10.021.

24. Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., Isaeva, O.,

Osokin, N., Kozlov, I., Frenkel, F., Gancharova, O., et al. (2021).

Conserved pan-cancer microenvironment subtypes predict response to

immunotherapy. Cancer Cell 39, 845–865.e7. https://doi.org/10.1016/j.

ccell.2021.04.014.

25. Patil, N.S., Nabet, B.Y., M€uller, S., Koeppen, H., Zou, W., Giltnane, J., Au-

Yeung, A., Srivats, S., Cheng, J.H., Takahashi, C., et al. (2022).

Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-

small cell lung cancer. Cancer Cell 40, 289–300.e4. https://doi.org/10.

1016/j.ccell.2022.02.002.

26. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and
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devsci-dac-d@gene.com. The datawill be released to such requesters with necessary agreements to enforce terms such as security,

patient privacy and consent of specified data use, consistent with evolving, applicable data protection laws. Additional clinical data is

available via request from vivli.org. This paper also analyzes existing, publicly available data, these accession numbers for the data-

sets are listed in the key resources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement
IMpower133 (NCT02763579) is a randomized, Phase I/III, multicenter, double-blinded, placebo-controlled study of atezolizumab

(anti–PD-L1) in combination with CE (n=201) compared with treatment with placebo in combination with CE (n=202) in chemo-

therapy-naive participants with ES-SCLC. The study protocol (Horn et al., 2018) was approved by the institutional review board or

independent ethics committee for each study site and was performed in full accordance with the Guideline for Good Clinical Practice

and the Declaration of Helsinki.

Human tumor specimens
All biological materials in this study, and subsequent evaluations, were used in accordance with the informed consent agreements

obtained from all subjects.

METHOD DETAILS

Study design and participants
The design of the randomized, double-blind IMpower133 trial has been reported previously.7,8,23 Patients with chemotherapy-naive

ES-SCLCwere stratified by sex (male versus female), EasternCooperativeOncologyGroup (ECOG) performance status (PS; 0 versus

1), and presence of brain metastases (yes versus no). Patients were randomly assigned 1:1 to receive four 21-day cycles of CE with

either intravenous (IV) atezolizumab 1200 mg or IV placebo on day 1 of each cycle (induction phase), followed by IV atezolizumab or

placebo (maintenance phase), until unacceptable toxicity or disease progression; patients could continue treatment after progres-

sion per Response Evaluation Criteria In Solid Tumors 1.1 (RECIST 1.1) if there was evidence of clinical benefit. Prophylactic cranial

irradiation (PCI) was permitted during the maintenance phase. The co-primary endpoints were OS and investigator-assessed PFS in

the intention-to-treat population. An independent data and safety monitoring committee reviewed safety data regularly. In this study,

tumors from 271/403 (67%) patients were transcriptionally profiled by RNA-seq and tumor mutational burden was profiled by DNA

whole exome sequencing (WES).

RNA-seq sample collection and sequencing
Using Hematoxylin and Eosin (H&E) as a guide, formalin-fixed paraffin-embedded tissue (FFPET) wasmacro-dissected for the tumor

area. RNA was extracted using the High Pure FFPET RNA Isolation Kit (Roche) and assessed by Qubit and Agilent Bioanalyzer for

quantity and quality. First strand cDNA synthesis was primed from total RNA using random primers, followed by the generation of

second strand cDNA with dUTP in place of dTTP in the master mix to facilitate preservation of strand information. Libraries were en-

riched for the mRNA fraction by depletion of ribsomal RNA. Libraries were sequenced using the Illumina sequencing method.

RNA-seq data generation and processing
TruSeq technology (Illumina) was used to generate whole-transcriptome profiles. To remove ribosomal reads, RNA-seq reads were

first aligned to ribosomal RNA sequences. GSNAP version 2013-10-10 was used to align the remaining reads to the human reference

genome (NCBI Build 38), allowing a maximum of two mismatches per 75 base sequences (parameters: ‘-M2-n10-B2-i1-N1-

w200000-E1-pairmax-rna = 200000 –clip-overlap).41,42 To quantify gene expression levels, the number of reads mapped to the

exons of each RefSeq gene was calculated using the functionality provided by the R/Bioconductor package GenomicAlignments.

Raw counts were adjusted for gene length using transcript-per-million (TPM) normalization, and subsequently log2-transformed.

Raw and processed data are available under the data-sharing agreement.

Bulk RNAseq gene expression analysis and gene set analyses
In order to understand the biological pathways underlying NMF-defined subsets, differential gene expression and quantitative set

analysis for gene expression (QuSAGE) analysis was performed to compare each cluster to all others and each pairwise comparison.

Differentially expressed genes between these two groups were determined using the R package limma, which implements an empir-

ical Bayesian approach to estimate gene expression changes using moderated t-tests.43 Gene set analyses were performed using

the QuSAGE package which quantifies geneset activity with a complete probability density function to then calculate p-values and

confidence intervals.44 Genesets utilized in this study were curated from public repositories and can be found in Table S3. Sample-

level gene signature scores for plotting were calculated as the mean z-score for all the genes in the signature across each respective

cohort. For Kaplan-Meier analysis of specific gene signatures, samples were dichotomized by the cohort-wide median unless other-

wise indicated.
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Tumor whole-exome sequencing and variant calling
Whole-exome libraries were prepared from tumor FFPE DNA and matched germline DNA using the Agilent SureSelect v6 and

sequenced at 2 x150 bp. Fastq file quality checks were performed with FastQC (v.0.11.9). Fastqs were pre-processed and aligned

to hg38 using Picard (v2.18), Burrows-Wheeler Aligner (v0.7.15-r1140),45 Genome Analysis Toolkit v4.1.4.1.46 Tumor/normal pair

confirmation is provided byNGSCheckmate.47 Variant callingwas done byMutect2,48 LoFreq2,49 and Strelka,50 and annotated using

Ensembl Variant Effect Predictor (VEP).51 Nonsynonymous variants with a VEP score of moderate or high were only reported if iden-

tified by 2 of 3 variant callers.

Non-negative matrix factorization (NMF)
Unsupervised approach based on consensus non-negative matrix factorization (cNMF) was applied to normalized RNAseq data to

identify transcriptomic based subsets. This type of clustering is based on the dimensional reduction methodology of NMF which re-

duces the expression data from thousands of genes to a few metagenes (CRAN. R package version 0.22.0)52 combined with the

consensus clustering to test stability of iterative NMF runs. This method computes multiple k-factor factorization decompositions

of the expression matrix and evaluates the stability of the solutions using a cophenetic coefficient. Similar to the approach employed

by TCGA in other cancer types, we used a standard non-parametric approach, Median Absolute Deviation (MAD) analysis, to select

5829 genes (top 10%) with the highest variability across 271 tumors.52 Then, we applied consensus NMF clustering testing k=2 to

k=8 and identified k=4 as the most robust subsets using the cophenetic correlation. Earlier work in SCLC12 determined�1300 most

variable genes using a parametric approach (i.e., standard deviation, in contrast to our non-parametric MAD approach) on 81

LS-SCLC samples from an earlier study20 to run NMF, while we use our full n=271 ES-SCLC dataset. In the prior work, these

�1300 genes were used to hierarchically cluster IMpower133 samples and assign them to the LS-SCLC-defined subtypes, whereas

we de novo define subsets in the IMpower133 dataset using NMF.

Multiplex immunofluorescence
5um thick formalin-fixed paraffin-embedded (FFPE) tissue sections were evaluated with multiplex immunofluorescence (mIF) tech-

nology for the following markers: CD68 (KP-1; Dako, cat#M0814), CD3e (SP34-2; BD Pharmingen, cat#551916), CD8 (C8144B;

Dako, cat#M7103) and CD163 (EdHu-1; BioRad, cat#MCA1853). Panel development and optimization included using 4 micron sec-

tions of normal human FFPE tonsil and the results from each experiment were reviewed by the study pathologist. All IF slides were

counterstained with DAPI andmounted in Prolong Gold antifademedia (Invitrogen, cat# P36930). All scanswere performed using the

Olympus VS200 at 20X. The chromogenic IHC protocol was adapted for IF on the Ventana Discovery Ultra and checked for signal

consistency. The CD68, CD3E, and CD8 antibodies had been previously optimized. An epitope stability assay was performed to

determine the best position in a multiplex for the CD163 antibody. During this assay the tissue is subjected to 0-4 elution treatments

before the antibody is applied. The fluorescent image signal intensities were quantified via Visiopharm tissue analysis software in or-

der to select the best position for CD163 antibody. An antibody stripping efficiency assay was performed to ensure the antibody was

completely eluted after each round of TSA staining. The antibody was titrated and the fluorescence was quantified by Visiopharm

software to determine the best concentration, which would provide the brightest signal intensity before diminishing returns. Finally,

the entire 4plex including CD163 antibody was tested on the control tonsil tissue along with empty-channel controls (Leave-One-Out)

for each antibody.

IMpower133 samples were retrieved from nitrogen storage and stained in two batches due to the capacity limit of the Ventana

Discovery Ultra. Both batches included sections of the normal tonsil used in the panel’s development for negative and positive con-

trols and to assess inter-batch variation. The stained mIF slides were mounted with Prolong Gold and scanned with the Olympus

VS200 at 20X magnification. The slides were then stained for H&E (terminal H&E stain), and the terminal H&E slides were scanned

on the Olympus VS200 at 20X.

TSA 4-plex (CD163, CD3e, CD68, andCD8markers) whole slide images were acquired using immunofluorescence (IF) microscopy

on tissue samples that were also H&E-stained and imaged. All images were converted to OME-TIFF format, and image registration

between the raw IF and H&E images was performed using the UltiStacker software and uploaded to OMERO for viewing and anno-

tation. Visual inspection of the entire data set was performed by a pathologist, and tumor regions that passed the quality assessment

were annotated in OMERO as ROIs for single cell analysis.

The data set was then processed through our Python-based spatial proteomics pipeline for single cell analysis, which includes

nucleus segmentation, cell feature extraction, background subtraction, and cell phenotyping. Nucleus segmentation using the

DAPI channel of each aligned image was first performed using StarDist’s pretrained ‘2D_versatile_fluo’ model, and the mean fluo-

rescent intensity (MFI) of each marker was extracted for each segmented nuclei. Each nuclei was dilated out by a different number

of pixels to accommodate for the spatial localization of that specific marker. Each fluorescent marker image was also pre-processed

using a median blur filter with a different footprint, depending on the image property of that marker. Background signal reduction for

the extracted single-cell MFIs was then independently performed using a Gaussianmixture model (GMM) for eachmarker, where the

MFIs of each cell population within multiple fixed-sized neighborhoods were each fit to a GMM, and a threshold of the background

signal was determined between the positive and negative signal clusters. Each single-cell MFI was then corrected for background

noise using this threshold. Single-cell phenotyping was then performed by manually determining the global positive signal threshold

for eachmarker, and the phenotype of each cell was then determined based on the marker positivity pattern unique to each cell type.

Cells not classified as CD3+/CD8-, CD3+/CD8+, CD68+/CD163+, or CD68+/CD163- were classified as Other. Cells that fall within
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the pathologist’s annotations were alsomarked for analysis based on the location of their nucleus centroids. Analyses were restricted

to pathologist annotated tumor area.

scRNA-seq analysis
Human SCLC scRNA-seq atlas data31 were downloaded from Synapse (synapse.org). The Pegasus single cell analysis pipeline

(v1.7.1)53 was used to aggregate samples, then perform quality control to keep high quality samples and cells for further analysis

(min_genes = 200, percent_mito = 20, robust genes >= 0.05% of cells), leaving 73,263 cells from 22 samples from 18 patients.

Following the standard steps of the Pegasus pipeline built-in marker dictionaries were used to classify inferred clusters into likely

cell types, which were manually reviewed for accuracy. Cells were split into tumor and other groups based on cluster membership,

and the pipeline was run again for the tumor cells group, followed by a second removal of remaining other cells to leave 57,380 tumor

cells. These cells were imported into Seurat v.4.4, where Z scores were calculated for individual genes and plotted on UMAPs with

coordinates from Pegasus.

QUANTIFICATION AND STATISTICAL ANALYSIS

R (v4.0.0) was used for all analyses. The two-sided Mann-Whitney test (R function Wilcox.test) for two groups and the Kruskal-Wallis

test (R function Kruskal.test) for more than two groups were used for all comparisons for continuous variables, unless otherwise

stated. Dunn’s post-hoc test was applied with Benjamini-Hochberg multiple testing correction for pairwise comparisons. Pearson’s

Chi-squared test with continuity correction was used (R function chisq.test) for categorical variables. FDR-adjusted P-values are re-

ported. * P<0.05; ** P<0.01; *** P<0.001, unless otherwise stated. Survival analyses were conducted using Cox-proportional hazard

models using the R survival package (v3.1.7). Log-rank P-values were reported for survival analyses including more than two groups.

The horizontal line represents the median in all box plots. The lower and upper hinges in all box blots correspond to the first and third

quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the

interquartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value

at most 1.5 * IQR of the hinge.
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