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KEY PO INT S

l Almost one-third of
myeloma patients
have genetic
alterations in CRBN
(IMiD binding protein)
by the time they are
refractory to POM.

l Genetic changes to
CRBN are associated
with inferior outcomes
to POM-based
regimes in those
already refractory
to LEN.

Emergence of drug resistance to all available therapies is the major challenge to improving
survival in myeloma. Cereblon (CRBN) is the essential binding protein of the widely used
immunomodulatory drugs (IMiDs) and novel CRBNE3 ligasemodulator drugs (CELMoDs) in
myeloma, as well as certain proteolysis targeting chimeras (PROTACs), in development for
a range of diseases. Using whole-genome sequencing (WGS) data from 455 patients and
RNA sequencing (RNASeq) data from 655 patients, including newly diagnosed (WGS,
n 5 198; RNASeq, n 5 437), lenalidomide (LEN)-refractory (WGS, n 5 203; RNASeq,
n5 176), and pomalidomide (POM)-refractory cohorts (WGS, n5 54; RNASeq, n5 42), we
found incremental increases in the frequency of 3 CRBN aberrations, namely point mu-
tations, copy losses/structural variations, and a specific variant transcript (exon 10 spliced),
with progressive IMiD exposure, until almost one-third of patients hadCBRN alterations by
the time theywere POM refractory.We found all 3CRBN aberrations were associatedwith
inferior outcomes to POM in those already refractory to LEN, including those with gene
copy losses and structural variations, a finding not previously described. This represents
the first comprehensive analysis and largest data set of CBRN alterations in myeloma

patients as they progress through therapy. It will help inform patient selection for sequential therapies with CRBN-
targeting drugs. (Blood. 2021;137(2):232-237)

Introduction
Myeloma remains incurable because of the universal emergence
of drug resistance. Identification of resistance mechanisms in
relapsed/refractory myeloma would facilitate appropriate tar-
geting of novel therapeutics to resistant myeloma cells.

Antimyeloma therapies immunomodulatory drugs (IMiDs) and
their newer derivatives CRBN E3 ligase modulators (CELMoDs)
bind the E3 ligase substrate-recognition adapter protein cere-
blon (CRBN). CRBN is essential for the therapeutic effect of these
drugs in myeloma.1,2 CRBN mutations have been described as
rare events (,1%) in newly diagnosed (ND) patients,3,4 but they
have been reported at a higher frequency (12%) in IMiD-treated
patients, although the numbers reported have been low.5 Be-
yond mutation, CRBN function may be impaired by other ge-
nomic (structural variation, copy loss) or transcriptomic aberrations
(epigenetic, RNA splicing/stability). Gene expression loss and

transcript splice variation have been associated with acquired
resistance to IMiDs lenalidomide (LEN) and pomalidomide
(POM).6-8One-third of LEN-refractory patients go on to respond to
POM.9 However, a systematic analysis of the diversity of CRBN
changes associated with acquired resistance to IMiD-based ther-
apies and their clinical significance has not been undertaken. We
report CRBN changes identified in 454 patients by whole-genome
sequencing (WGS) and 655 patients by RNA sequencing (RNA-
Seq), including ND, LEN-refractory, and POM-refractory cases.

Methods
DNA and RNA extracted from bead-enriched CD1381 myeloma
cells and peripheral blood germ line DNA were collected at
baseline and relapse from patients recruited to trials CC4074-
MM010 (STRATUS; registered at www.clinicaltrials.gov as
#NCT01712789; entry criteria included LEN-refractory status),9
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Lenalidomide refractory cohort (n = 203). 42/203 = 20.7% have CRBN change
High Exon10-spliced transcript
Copy Loss
Mutation
Structural variant

Pomalidomide refractory cohort (n = 54). 16/54 = 29.6% have CRBN change.
High Exon10-spliced transcript
Copy Loss
Mutation
Structural variant

Gene expression data unavailable. All cases have genome sequencing analysis.
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Figure 1.
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CC220-MM001 (registered at www.clinicaltrials.gov as #NCT027
73030),10 andCC122-ST-001MM2 (registeredatwww.clinicaltrials.gov
as#NCT01421524) (entry criteria to both included LEN- and POM-
refractory status). In all cases, clinical annotation data were col-
lected. Progression-free survival (PFS) data were not available for
the latter 2 phase 1/dose-finding trials. Illumina WGS (depth
coverage 60/30x tumor/germline) and RNASeq were performed.
Newly diagnosed (ND) patient data from the IFM/DFCI-2009 trial
(registered at www.clinicaltrials.gov as #NCT01191060; WGS)11

and the Myeloma Genome Project12 (RNASeq) were also used.
Computational methods are described in supplementary Meth-
ods (supplemental Figure 1, available on the BloodWeb site). This
analysis is complementary to a landscape analysis of relapsed/
refractory myeloma using the same cohorts, the subject of a
separate publication (in preparation).

Results and discussion
We included WGS data from 198 ND, 203 LEN-refractory, and
54 POM-refractory patients and RNASeq data from 437 ND,
176 LEN-refractory, and 42 POM-refractory patients (summary
patient characteristics listed in supplemental Tables 1 and 2). Only
those with confirmed drug-refractory status were included in the
LEN- and POM-refractory cohorts, defined as myeloma patients

with either nonresponsive or progressive disease while taking the
named drug or progressive disease within 60 days of stopping it.

CRBN genetic variation and copy loss increase in
incidence at sequential IMiD-refractory states
CRBN mutations were detected in 1 (0.5%) of 198 ND myeloma
patients, 5 (2.2%) of 203 LEN-refractory patients, and 5 (9%; 8
mutations detected) of 54 POM-refractory patients (Figure 1A),
significant increases (P , .05) from baseline. Mutation clonal
fraction distribution (Figure 1A) remained variable at LEN- and
POM-refractory states, and mutations displayed no clustering
along the CRBN gene (Figure 1B), but structural modeling
predicted a majority to have a deleterious effect on protein
stability or function (supplemental Figure 2).

CRBN gene copy loss occurred in 3 (1.5%) of 198NDpatients, 16
(7.9%) of 203 LEN-refractory patients, and 13 (24%) of 54 POM-
refractory patients (Figure 1C), again significant increases (P, .05)
from baseline. CRBN copy loss was compared with background
loss of heterozygosity (LOH) rate using a permutation test with
false discovery rate correction. In LEN-refractory patients, CRBN
loss was not enriched beyond background LOH. However, in
POM-refractory patients, CRBN LOH was significantly enriched
(P 5 .006). The size of the lost region varied widely, but neither

Figure 1. Incidence of mutation, copy loss, structural variation, or high exon 10–spliced transcript of CRBN increases with sequential IMiD refractoriness. (A) Incidence
ofCRBNmutations (left-handed system [LH] y-axis) and their cancer clonal fractions (CCFs; right-handed system [RH] y-axis) at ND, LEN-, and POM-refractory states. Significance
detected by Fisher’s exact test to detect equality of proportions (nonparametric). (B) Amino acid changes resulting from themutations inCRBN gene found at each state. CCF of
each mutation shown. (C) Incidence of copy loss or structural variation (LH y-axis) and their CCFs (RH y-axis; copy loss only) at ND, LEN-, and POM-refractory states. Significance
detected by Fisher’s exact test to detect equality of proportions (nonparametric). (D) Diagrammatic representation of site of structural variant breakpoints identified at LEN
refractoriness. (E) Change in ratio of exon 10–spliced/full-length transcripts between ND, LEN-, and POM-refractory states; ratio expressed as log2(exon 10–spliced/full-length
transcript count) 3 tumor sample purity. Significant difference detected by Kruskal-Wallis 1-way analysis of variance (nonparametric). (F) Landscape of total and coincidence
of 4 types of CRBN aberrations in LEN- and POM-refractory cases analyzed. *Mutations from same patient.
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Figure 2. Incidence of mutation, copy loss, structural variation, or high exon 10–spliced transcript of CRBN correlates with outcome to POM in a LEN-refractory
cohort. High exon 10–spliced transcript correlateswith outcome to induction therapy inNDmyeloma. (A) PFS of those who carried the 4 types ofCRBN aberration vs those
unaffected in the LEN-refractory cohort exposed to POM-based therapy. (B) PFS of those carrying$1 of any type of CRBN aberration vs those unaffected in the LEN-refractory
cohort exposed to POM-based therapy. (C) Association of high exon 10–spliced CRBN transcript with PFS in the ND cohort undergoing induction therapy. (D) Overall survival
(OS) of those carrying $1 of any type of CRBN aberration vs those unaffected in the LEN-refractory cohort exposed to POM-based therapy. (E) Association of high exon
10–spliced CRBN transcript with OS in the ND cohort undergoing induction therapy. Comparison of survival curves by log-rank testing in all cases.
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whole-chromosome nor homozygous loss was seen (supple-
mental Figure 3). CRBN gene expression was no different in cases
with gene copy loss (supplemental Figure 4B), so how copy loss of
CRBN could affect IMiD resistance remains unclear. Additional
structural variants (translocations, inversions) of theCRBN gene or
promoter region were found only in the LEN-refractory cohort
(Figure 1C); all but 1 of those identifiedwere highly likely to impair
gene function (Figure 1D).

Exon 10–spliced CRBN transcripts increase in
incidence at sequential IMiD-refractory states
In a subcohort of the cases described here, wepreviously reported
that pretherapy CRBN expression, as measured by quantitative
reverse transcription polymerase chain reaction, did not correlate
with subsequent response to POM.13 We confirmed this lack of
correlation by RNASeq (data not shown), although as previously
described,7 overall CRBN expression was lower at LEN- and/or
POM-refractory states (supplemental Figure 4C). However, many
splice variants of CRBN have been described,14 including a
transcript lacking exon 10, deleting the LEN/POM-binding

region.2 This splice variant is not expected to bind or support IMiD
function. We found that the ratio of exon 10–spliced/full-length
CRBN transcripts, adjusted for sample purity, was significantly
increased in POM-refractory compared with ND or LEN-refractory
patients (P, .0001; Figure 1E). Full-lengthCRBNgene expression
did not significantly vary between cases with high vs low exon
10–spliced ratio (supplemental Figure 4A).

The ratio of exon 10–spliced (ENST00000424814.5)/full-length
transcripts (ENST00000231948.8) has previously been proposed
to correlate with outcome after IMiD-based regimens.8 We
determined the optimum sample purity-adjusted cutoff for a
high exon 10–spliced/full-length transcript ratio to be 2.6
(supplemental Figure 5). Using this cutoff, the overall incidence
of CRBN alterations in LEN-refractory cases was 20.7%. In POM-
refractory cases, it was 29.6% (Figure 1F), although poorer
sample purity in the POM-refractory cohort means high exon
10–spliced incidence may have been underreported, once ratio
adjustment by sample purity was applied (supplemental Figures
6 and 7; supplemental Methods).
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In LEN-refractory patients, the presence of CRBN
genetic changes or high exon 10–spliced ratio
correlates with PFS
Next, we examined the relationship between the incidence of
CRBN aberrations and PFS in LEN-refractory patients with
both WGS and RNASeq data available (n 5 174), treated with a
POM-based regimen. Overall, PFS was significantly reduced
(P , .0001) in LEN-refractory patients with mutations (n 5 4),
copy losses (n 5 15), structural variations (n 5 6), or high exon
10–spliced ratio (n 5 17) (Figure 2A-B), compared to patients
with no CRBN aberrations. We found that this association was
also present in ND myeloma patients undergoing induction
therapy. Only high exon 10–spliced ratio had sufficient incidence
at new diagnosis to assess correlation, and it was associated
with significantly reduced PFS (Figure 2C). Induction regimen was
too varied to perform subgroup analysis specifically for IMiD-
based induction regimen, but 62.4% (236 of 378 patients age
,75 years for whom sample purity data were available) received
a regimen containing an IMiD drug. In both cohorts, overall
survival was also significantly reduced in those with CRBN ab-
errations (Figure 2D-E; aberrations by type shown in supple-
mental Figure 8). The incidence of high-risk cytogenetics was not
different between CRBN-aberrant and unaffected groups
(supplemental Table 2).

This is the first attempt to quantify the range of defects in CRBN,
the molecular target of IMiDs and CELMoDs. Our analysis
confirms the rarity of CRBN mutations in ND myeloma. As pa-
tients receive therapy, the incidence of mutations and other
genetic alterations increases with the acquisition of LEN- and
POM-refractory states. All alteration types are associated with
adverse clinical outcomes, irrespective of CRBN gene expres-
sion. Interestingly, the drug binding region of the protein is not
favored in these mutations, which occur along the length of the
protein. We describe structural variants in theCRBN gene for the
first time and show association with adverse outcomes.

Taken together, direct CRBN genetic alterations occur in nearly
30% of relapsed/refractorymyeloma patients treated with IMiDs,
making it the single most clinically significant contributor to clinical
resistance. The novel CELMoDs iberdomide and CC92480 are
currently in clinical trials in the LEN/POM-refractory myeloma
population (registered at www.clinicaltrials.gov as #NCT02773030
and #NCT03374085). It is premature to ascertain the impact of
CRBN dysregulations on the efficacy of CELMoDs at present, al-
though analysis of data from ongoing trials may reveal this in time.

This initial focused analysis excluded CRBN-independent genomic
and transcriptomic features of resistance, nor did we explore the
underlying mechanisms that cause such CRBN aberrations and
result in drug resistance, whichwill be the subject of future analyses.
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