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Housekeeping genes involved in non-malignant
breast phenotypes are widely expressed in multiple
cancers and provide novel biomarkers of tumor
classification
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Abstract

Clinically relevant biomarkers are useful to determine cancer patients’ prognosis and treatments. To discover new putative
biomarkers, we performed in silico analysis of a 325-gene panel previously associated with breast epithelial cell biology and
clinical outcomes. Sixteen public datasets of microarray samples representing 8 cancer types and a total of 3,663 patients’
samples were used for the analyses. Feature selection was used to identify the best subsets of the 325 genes for each
classification, and linear discriminant analysis was used to quantify the accuracy of the classifications. A subset of 102 of the
325 genes were found to be housekeeping (HK) genes, and the classifications were repeated using only the 102 HK subset.
The 325-gene panel and 102 HK subset were able to distinguish colon, gastric, lung, ovarian, pancreatic, and prostate tumors
and leukemia from normal adjacent tissue, and classify disease subtypes of breast and lung cancers and leukemia with 70% or
higher accuracy. HK genes have been overlooked as potential biomarkers due to their relative stability. This study describes a
set of HK genes as putative biomarkers applicable to multiple cancer types worth following in subsequent validation studies.
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Introduction

Oncogenes and other genes involved in carcinogen-
esis are well-studied candidates for biomarkers, but some
researchers have also looked at models of normal growth,
differentiation, or development to identify cancer-relevant
genes with some success (1-4). In this context, house-
keeping genes (HK) have become a target of research
for their relative stability regardless of cell development
stages, specific tissue, or external conditions (5,6).

HK are essential genes for basal cell maintenance,
regardless of tissue of origin (5). These genes have
different evolutionary profiles than others, which contribute
to genomic stability. In a previous study by our group, a set
of 325 genes was identified as being involved in the for-
mation of organized ductal units in 3-dimensional human
mammary epithelial cell culture in laminin-rich extracellular
matrix (7). This process includes the transition of cells
from a disorganized proliferating state to an organized
growth-arrested and polarized state, and these same

Correspondence: L. Delmonico: <lucasdelmonico@gmail.com>
*These authors contributed equally to this study.

Received June 12, 2020 | Accepted February 12, 2021

Braz J Med Biol Res | doi: 10.1590/1414-431X2020e10388

genes were used successfully to classify breast cancer
patients into good and poor prognosis groups (7,8). It has
recently been shown that a subset of the 325 gene panel
was able to stratify triple negative breast cancer patients
into responders to neoadjuvant chemotherapy (NAC),
minimal residual disease (RD) after NAC, and even
worse-surviving RD cases (9). Moreover, the reproduc-
ibility of the 325 RNA biomarkers was validated by com-
paring two gene expression platforms (Affymetrix and
NanoString) (10).

Interestingly, when extending the evaluation of this
signature to determine the best method for batch correc-
tion of microarray data, it was discovered that a set of 102
genes of the 325 genes are classified as HK (11). A highly
cited list of HK genes was defined by the Levanon lab in
2003 (5) and was updated in 2013 (6). In the latter study,
the authors identified 3,804 human HK genes, using the
criteria that they showed less than four-fold variation in
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expression across 16 normal human tissues. Then, in this
study, the 325 genes were tested for their ability to be
used as RNA expression biomarkers in other cancer types
besides breast, using either of two criteria: 1) having
different expression levels in tumors than in healthy tissue;
or 2) having different expression in subtypes of the same
cancer. After the initial tests of biomarker capability using
the 325 genes, the tests were repeated on the HK subset
(102 genes) to determine whether HK genes by them-
selves can classify tumors.

Material and Methods

List of the 325 genes

Samples information from 16 cancer data sets were
extracted from the SOFT files for GEO studies (such as
GSE26712_family.soft). Sixteen cancer data sets obtained
from GEO and ArrayExpress were used to evaluate the
expression of the 325 genes (Table 1). For the one Array-
Express study (E-TABM-157), sample information was
extracted from its SDREF file and its associated publication
(12). The gene symbols, Entrez Gene IDs, RefSeq acces-
sions, names, and Affymetrix probesets for the 325 genes
are shown in Table S1. For genes with multiple Affymetrix
probesets, a single probeset was selected to represent the
gene. This was typically the probeset showing the highest
expression measured in log2 signal intensity.

Sample information files were standardized for all 16
studies so that they could be combined conveniently into
one large data structure. The individual studies were
quantile-normalized using RMA in R and Bioconductor
(“oligo” package), and expression levels were converted
to the log base 2 scale (13).

Table 1. Sixteen cancer studies from GEO and ArrayExpress
representing 8 cancer types.

Tissue Accession N’ Scale Factor?
Breast (BR1) GSE25055 310 0.9760
Breast (BR2) E-TABM-157 51 1.0498
Colon (CO1) GSE39582 585 0.9660
Colon (CO2) GSE68468 366 0.8930
Gastric (GA1) GSE13911 69 1.0006
Gastric (GA2) GSE54129 132 0.9480
Leukemia (LK1) GSE13159 568 1.0129
Leukemia (LK2) GSE14471 110 1.1173
Lung (LU1) GSE19188 156 0.9731
Lung (LU2) GSE30219 307 0.9351
Ovarian (OV1) GSE26712 192 1.0915
Ovarian (OV2) GSE9891 285 0.9290
Pancreatic (PA1) GSE15471 78 0.9260
Pancreatic (PA2) GSE16515 52 0.9926
Prostate (PR1) GSE17951 154 0.7890
Prostate (PR2) GSE8218 148 0.8057

"Number of samples from each study that were used in this
analysis. 2Scale factor used for each study in batch correction.
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The functional analysis of each gene (325) was
generated from of the DAVID algorithm (the Database
for Annotation, Visualization and Integration Discovery)
(14). To describe significant canonical pathways, muta-
tions, evidence of target drug development, biological
functions, diseases, and interaction networks, QIAGEN’s
Ingenuity Pathway Analysis (IPA®, QIAGEN, USA) was
used. The core analysis was performed and direct and
indirect relationships were considered to generate the
networks. Canonical pathways were sorted by highest
enrichment score and smallest Benjamini-Hochberg-
adjusted P-value.

Cancer data sets

Sixteen public data sets of microarray expression were
selected for 8 cancer types: breast, colon, gastric,
leukemia, lung, ovarian, pancreatic, and prostate cancers.
The data sets were taken from NCBI’s GEO and EBI’s
ArrayExpress resources (15,16). The accession numbers
and sample sizes used for each cancer type are shown in
Table 1, adding up to 3,563 patients and cell lines. All of
the microarrays used were Affymetrix HG-U133A or U133
Plus 2.0. These two platforms share 22,277 probesets in
common, and only these common probesets were used in
our analyses. The expression range of the 325 genes was
examined in all 16 studies. In the 11 studies that included
some normal samples (CO1, CO2, GA1, GA2, LK1, LU1,
LU2, OV1, PA1, PA2, PR1), the classification of tumor
and normal samples was tested. Seven of the studies
included cancer subtype information (BR1, BR2, GA1,
LK1, LU1, LU2, OV2) and these were used to test subtype
classification.

For each classification test, feature selection was used
to identify 20-gene subsets of the 325 genes that differed
most between the two groups being compared and linear
discriminant analysis (LDA) was used to classify the
groups (17). Most of the studies are heavily unbalanced,
having many more tumor samples than normal ones. In
unbalanced cases like these, overall classification accu-
racy (number of correctly classified samples divided by all
samples) is not a useful metric for evaluating model
results, because a simple model classifying every sample
as a tumor would be 95% accurate when 95% of the
samples are tumors. Instead, a class accuracy average
was used, where the accuracy of the tumor class was
calculated first, then the accuracy of the normal class, and
then these two values were averaged.

Batch correction

The 16 studies were batch corrected in order to
compare gene expression levels across cancer types.
Correction using ComBat (18) was attempted first, but
covariates like disease subtype names were confounded
with batches in several cases and ComBat would
thus remove subtype variability. Instead, the 16 studies
were batch corrected using an equal medians method,
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constraining the median of the 22,277 probesets to have
the same value in each study (11). This preserves
the variability of individual genes (like the 325-gene set)
while putting the overall expression distributions of the
16 studies on a similar scale. The batch correction scale
factor used for each study is included in Table 1.

Randomized gene sets

To test whether any random set of genes with the
same size as the 325 genes would show similar
expression profiles, 1,000 random sets of the 325 genes
were sampled from the full list of 22,277 probesets. Total
expression of each set was calculated as the sum of the
average log, intensities of the 325 genes. The gene
expression of the 325 genes was also compared to a set
of 325 randomly selected HK genes using the same
calculations. The random 325 HK genes were selected
from only non-325 genes in Levanon’s list of 3,804. Table
S1 has two tabs, the first showing the 325 genes and the
second the 102 HK genes.

Feature selection

Subsets of the 325 genes that differed the most
between tumor and normal conditions were identified by
a feature selection method. Two values, TumorHigh and
NormalHigh, were computed for each gene as follows:
TumorHigh = (Tmedian - Nmedian) / (TSD + NSD)a Normal-
High = (Nmedian - Tmedian) / (TSD + NSD)- Tmedian and
Nmedian are the median values of the tumor group and
normal group, respectively, and Tsp and Ngp are their
standard deviations. Genes with the top 10 TumorHigh
scores were combined with genes having the top 10
NormalHigh scores, and these 20 genes were used as the
features in the tumor/normal classification tests. The same
feature selection method was used for the disease
subtype tests, combining 10 genes higher in one subtype
with 10 genes higher in the other subtype.

Tumor vs normal tests

LDA was performed to compare tumor and normal
samples for the 11 studies that included normal samples
(CO1, CO2, GA1, GA2, LK1, LU1, LU2, OV1, PA1, PA2,
and PR1). Samples that were metastases or precancer-
ous biopsies were excluded from the comparisons. Most
of the 16 cancer data sets have heavily unbalanced
groups being compared, such as 300 cancers compared
to only 10 normal samples, which can bias differential
expression results (19), and this is why differential
expression was not used for our tests. LDA was used
with equal prior probabilities, which avoided the bias of
unbalanced groups.

Disease subtype tests

Seven of the studies (BR1, BR2, GA1, LK1, LU1,
LU2, and OV2) contained cancer samples with different
subtypes. The subtypes tested are listed in Table S2.
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The same feature selection and LDA methods described
above for the tumor vs normal tests were used for the
subtype tests. In the R scripts for testing tumor/normal
differences (tn_diffexp.R) and for testing subtype differ-
ences (e.g., ov2_subtypes.R), a maximum of twice as
many samples was allowed in one group compared to
another. For example, in ovarian cancer, if the input data
had 100 serous samples and only 10 endometrioid samples,
then 20 of the 100 serous samples were randomly selected
to make the comparison 20 of one group vs 10 of the other
group. This process was automated using R scripts so the
rule was applied consistently to all comparisons made in the
study.

Contributions of HK genes

The tumor vs normal and disease subtype tests were
repeated using the HK subset of the 325 genes (102
genes) to examine whether these genes contributed to the
separation of sample groups.

Results

Expression of the 325 genes

The expression levels of the 325 genes were plotted
for each of the 16 studies. In all studies, the 325 genes
were expressed across the full dynamic range of the
Affymetrix platform, from log, signal intensity values of
about 4 to 12. Using log, <4 as the background threshold,
at least 324 of the 325 genes were expressed above
background in every cancer type. Figure S1 shows
boxplots of the 16 studies before (Figure S1A) and after
(Figure S1B) batch correction. Figure S1C and D shows
boxplots of the batch-corrected 325 and 102 HK genes.

The minimum, average, and maximum of the 1,000
expression testing results for the 325 genes are plotted for
each cancer type in Figure S2. The 325 genes have
higher total expression than all 1,000 random sets in every
cancer type. The 325 genes also show more variability
across cancer types than the random sets do. As another
test, 325 other genes were selected at random from
Levanon’s 3,804 HK genes, where the random selection
was constrained to prevent overlap with the 325 genes.
The random HK genes were intermediate between the
325 genes and the random gene sets, both in their
expression levels and in their variability across cancer
types (Figure S2).

Functional analysis of genes

Functional analysis and grouping by biological function
of the 325 genes was performed using DAVID bioinfor-
matics resources (14). From the conversion of the
Affymetrix probes to Entrez Format, the algorithm was
able to return the function of 320 genes. The functional
analysis of the genes is shown in Table S3. Furthermore,
67 gene clusters based on the greatest interactions and
biological functions are provided. The clusters with the
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highest outstanding scores represent overlapping func-
tions, for example, function in the cell cycle, cell division,
mitosis, and DNA repair and replication (Table S4).

The analysis of genes using QIAGEN’s Ingenuity
Pathway Analysis (IPA®, QIAGEN) shows the biological
function of each gene. The software revealed diseases,
expression profiles, molecular changes, and drugs under
development that have the genes in question as a target
for study (Table S5). In particular, the software has
grouped the genes studied here into five major functional
groups: cell survival and death (P=5.00E-05), cell cycle
(P=6.92E-05), DNA replication, recombination, and repair
(P=6.92E-05), cell development (P=7.76E-05), and cell
growth and proliferation (P=7.76E-05), reaffirming the data
found by the DAVID algorithm previously. The main
diseases and disorders related to genes were five: can-
cer (P=6.92E-05), organismic injury and abnormalities
(P=6.92E-05), gastrointestinal disease (P=6.81E-05),
reproductive system disease (P=6.92E-05), and endo-
crine system disorders (P=3.68E-05).

Tumor vs normal tests

The first test was to determine whether the gene panels
were able to discriminate normal from tumor tissues. For
that, 11 datasets were analyzed that contained both tumor
and normal samples. Table 2 shows the tumor/normal
classification results for the 325 and 102 genes. The LDA
results show that the 325-gene panel correctly classified
over 90% of tumor and normal samples in colon, gastric,
leukemia, lung, ovarian, and prostate cancers datasets,
and 4 of these datasets had higher than 95% accuracy
(CO2, GA2, OV1, PR1). Similar results were obtained using
the two gastric (GA1, GA2) and pancreatic (PA1, PA2)
cancer studies, but more variation is seen between the
colon (CO1, CO2) and lung (LU1, LU2) cancer studies.
When only the 102 HK genes were used, the accuracy was
stil 90% or higher in the same datasets, and one
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pancreatic cancer set (PA2) that was 89% with 325 genes
set moved up slightly to 91% with 102 HK set, crossing the
90% threshold. These results showed the 325 and set of
102 HK genes contributed to classifications of normal and
tumor tissue in 8 of the 11 datasets analyzed, with accuracy
above 90%.

Disease subtype tests

Next, the 325 gene panel and the 102 HK subset were
tested for tumor subtype classification ability. For this
analysis, 14 comparisons were done using the 7 datasets
that included tumor subtype information. Table 3 shows
the cancer subtype classification results for the 325
and 102 HK genes. The 325 genes had 90% or better
accuracy in distinguishing one pair of leukemia subtypes
(AML_NORM and AML_INVT), and three pairs of lung
cancer subtypes (squamous vs adenocarcinoma in LU1,
squamous vs large cell in LU1, and squamous vs
adenocarcinoma in LU2). The 102 HK genes showed
reduced ability to distinguish tumor subtypes, reaching
only 90.59% for LK1 (AML_NORM vs AML_INVT) and
only 90.25% for LU1 (squamous vs large cell). In the
breast cancer results, the comparisons between ER and
TRIPNEG (ER positive and triple negative), ER/PR (ER or
PR positive), and TRIPNEG in BR1 were very similar as
would be expected (88% and 89%, respectively), but the
ER and TRIPNEG comparison in BR2 was very different
(59%). The BR1 samples came from 310 patients,
whereas the BR2 samples are 51 cell lines, which is a
likely explanation for the difference. In the lung cancer
comparisons, squamous vs adenocarcinoma classifica-
tion was high in both LU1 and LUZ2, but the subtypes that
were only available in LU2 (squamous vs small cell,
basaloid vs carcinoid) were poorly classified. Taken
together, the results showed that the 325 panel can
provide subtype classifications meeting the 90% threshold
in one leukemia dataset and three lung cancer datasets

Table 2. Overall accuracy (“Overall“), tumor group accuracy (“TumorPct“), normal group accuracy (“NormPct“), and average of the
tumor and normal class accuracies (“ClassAvg“) for the 325-gene set and its 102 housekeeping (HK) subset.

Study/Gene Panel Overall TumorPct NormPct ClassAvg
325 HK 325 HK 325 HK 325 HK

co1 84.23 80.64 84.65 81.33 73.68 63.16 79.17 72.24
CcOo2 98.4 98.4 98.97 98.97 96.36 96.36 97.67 97.67
GA1 94.2 95.65 92.11 94.74 96.77 96.77 94.44 95.76
GA2 100 100 100 100 100 100 100 100
LK1 91.9 92.78 90.89 91.9 98.65 98.65 94.77 95.28
LU1 94.23 94.23 94.51 93.41 93.85 95.38 94.18 94.4
LU2 80.46 73.94 81.57 75.77 57.14 35.71 69.36 55.74
ov1 100 100 100 100 100 100 100 100
PA1 87.18 83.33 92.31 79.49 82.05 87.18 87.18 83.33
PA2 86.54 90.38 83.33 88.89 93.75 93.75 88.54 91.32
PR1 98.36 95.9 98.18 96.36 100 91.67 99.09 94.02

Red type indicates that the mean accuracy of 325 and 102 genes for LU2 dataset was less than 70%.
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Table 3. Classification results for the 325-gene set and 102 housekeeping (HK) subset.

Study Subtypes Overall Subtype1Pct Subtype2Pct ClassAvg

325 HK 325 HK 325 HK 325 HK
BR1 ER vs TRIPNEG 89.76 84.94 84.09 75 91.8 88.52 87.95 81.76
BR1 ER/PR vs TRIPNEG 89.2 88.4 91.41 91.41 86.89 85.25 89.15 88.33
BR2 ER vs TRIPNEG 63.89 61.11 45.45 54.55 72 64 58.73 59.27
GA1 MSI vs MSS 84.21 68.42 78.95 63.16 89.47 73.68 84.21 68.42
LK1 AML_NORM vs AML_INVT 93.4 88.65 93.73 88.32 89.29 92.86 91.51 90.59
LK1 AML_NORM vs AML_T1517 65.46 63.92 66.67 65.24 54.05 51.35 60.36 58.3
LK1 AML_NORM vs AML_T821 63.94 64.71 65.53 66.95 50 45 57.76 55.98
LK1 AML_NORM vs AML_TMLL 59.64 59.9 60.68 61.82 50 42.11 55.34 51.96
LUA1 Squamous vs Adenocarcinoma 98.61 88.89 96.3 81.48 100 93.33 98.15 87.41
LU1 Squamous vs Large Cell 100 91.3 100 96.3 100 84.21 100 90.25
LU2 Basaloid vs Carcinoid 92.06 88.89 89.74 92.31 95.83 83.33 92.79 87.82
LU2 Squamous vs Adenocarcinoma 52.74 61.64 52.46 63.93 52.94 60 52.7 61.97
LU2 Squamous vs Small Cell 69.51 70.73 73.77 75.41 57.14 57.14 65.46 66.28
ov2 Serous vs Endometrioid 92.96 90.85 94.7 91.67 70 80 82.35 85.83

The “Subtype” columns list the two subtypes being compared. ER: estrogen receptor positive; ER/PR: estrogen and/or progesterone
receptor positive; TRIPNEG: triple negative; MSI: microsatellite instability; MSS: microsatellite stability; AML_NORM: acute myeloid
leukemia with normal karyotype; AML_INVT: AML with inv(16)/t(16;16); AML_T1517: AML with t(15;17); AML_T821: AML with t(8;21);
AML_TMLL: AML with t(11923)/MLL. Red type indicates that the mean accuracy of 325 and 102 genes for BR2, GA1, LK1, and LU2

datasets was less than 70%.

whereas the 102 HK followed the same trend but only met
the threshold in half of these datasets.

Discussion

HK genes have been widely used for gene expression
normalization due to their stable expression regardless of
external and pathological conditions (5,6). However, a
recent evaluation of the expression of 32 genes classified
as HK and applied to 12 different types of cancer has
revealed that the GADPH gene (traditionally used as HK)
showed significant mMRNA level alterations in more than
half of the cases evaluated (18). These results revealed
that HK expression may not follow the stability rule and
still vary between tumors. In affirmation of this differential
expression, the housekeeping genes of the ribosomal
protein undergo variations for prostate cancer cells, as
does the B-actin gene for treated colorectal cells (20).

In this context, in the healthy tissues where the 325
genes were originally identified (8), these genes were up-
regulated in the disorganized proliferating state and down-
regulated in the organized and growth-arrested state. An
unexpected result is that of these genes, 102 were HK
genes, showing biomarker potential for HK. A second
unexpected result was that these differences extended to
at least seven other cancer types (colon, gastric, leukemia,
lung, ovarian, pancreatic, and prostate). This was consis-
tent with our results showing their expression differences
between tumors and normal tissues (see Table 2).

Before this study, it was not recognized that about one
third of the 325 genes qualify as HK genes based on their

Braz J Med Biol Res | doi: 10.1590/1414-431X2020e10388

relatively stable expression across tissues. Yet, HK genes
were sufficient to separate tumors from normal tissue in
seven of the cancer types (colon, gastric, leukemia, lung,
ovarian, pancreatic, and prostate), without contributions
from non-HK genes. The functions of the HK subset of the
325 genes include mRNA splicing, mRNA export from the
nucleus, regulation of response to heat, recruitment of
factors to DNA lesions, protein import into the nucleus, and
mitochondrial genome maintenance (Tables S3 and S4).
The expression results showed that the 325 genes were
expressed at a broad range of levels in 8 different cancer
types (breast, colon, gastric, leukemia, lung, ovarian, pancre-
atic, and prostate) and at higher levels than randomly
selected gene lists, despite being originally identified in a
breast-specific developmental process. The genes were
able to accurately classify tumor and normal samples
from colon, gastric, leukemia, lung, ovarian, and prostate
cancers, and some subtypes of lung cancer and leukemia.
The HK subset was able to classify tumor and normal
samples in all of the same cancer types as the 325 set as
well as pancreatic cancer, while showing reduced accu-
racy in subtype classification. These lines of evidence
support the potential utility of both the 325 genes and the
102 HK genes as biomarkers in multiple cancer types.
Recently, our group showed that the differential expression
of 325 genes in breast biopsies in neoadjuvant chemo-
therapy were able to stratify, surprisingly, the cases with RD at
a rate of 83 and 91% in two independent cohorts (519 and
304 cases), comprising different breast tumor subtypes (ER
+HER2-, ftriple negative, HER2+, and ER-HER-PR+).
Furthermore, for the triple negative group, a tumor subtype
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with a worse prognosis and high rates of recurrence, the 325
genes in two different cohorts were able to identify 85.4% (88/
103) and 86.2% (56/65) of the cases with RD (9).

This study is original and expands with multiple results
from in silico analysis. Further work is needed to validate
these putative tumor-specific markers for independent exper-
imental and clinical validations, including different tumor
subtypes and their molecular variations. The research opens
avenues for investigation of other HK genes outside the set
of 325 genes that could also classify tumors and normal
samples. In addition to tumor/normal classification, further
work will focus on specific predictions of interest (diagnosis,
prognosis, patient stratification) in order to confirm that the
325 and 102 genes can provide clinical benéefits.
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