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Major depressive disorder (MDD) is an episodic condition with relapsing

and remitting disease course. Elucidating biomarkers that can predict future

relapse in individuals responding to an antidepressant treatment holds the

potential to identify those patients who are prone to illness recurrence.

The current study explored relationships between relapse risk in recurrent

MDD and circulating microRNAs (miRNAs) that participate in RNA silencing

and post-transcriptional regulation of gene expression. Serum samples

were acquired from individuals with a history of recurrent MDD who

were followed longitudinally in the observational study, OBSERVEMDD0001

(ClinicalTrials.gov Identifier: NCT02489305). Circulating miRNA data were

obtained in 63 participants who relapsed (“relapsers”) and 154 participants who

did not relapse (“non-relapsers”) during follow-up. The miRNA was quantified

using the ID3EALTM miRNA Discovery Platform from MiRXES measuring 575

circulating miRNAs using a patented qPCR technology and normalized with a

standard curve from spike-in controls in each plate. The association between

miRNAs and subsequent relapse was tested using a linear model, adjusting

for age, gender, and plate. Four miRNAs were nominally associated with

relapse status during the observational follow-up phase with a false discover

rate adjusted p-value < 0.1. Enrichment analysis of experimentally validated

targets revealed 112 significantly enriched pathways, including neurogenesis,

response to cytokine, neurotrophin signaling, vascular endothelial growth

factor signaling, relaxin signaling, and cellular senescence pathways. These

data suggest these miRNAs putatively associated with relapse status may have

the potential to regulate genes involved in multiple signaling pathways that

have previously been associated with MDD. If shown to be significant in a

larger, independent sample, these data may hold potential for developing

a miRNA signature to identify patients likely to relapse, allowing for

earlier intervention.
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Introduction

Major depressive disorder (MDD) is an episodic condition
with a relapsing and remitting disease course that has been
linked to altered function and genetic variation in neural
circuits and molecular pathways which regulate neuroimmune,
neuroendocrine, and behavioral responses to stressors and
opportunities for reward (1, 2). It has been reported that
clinical features such as rumination, subthreshold inter-episodic
depressive symptoms, family history, early MDD onset, and
family history of mental illness predict relapse/recurrence (3,
4). The relationships between biological pathways implicated
in MDD and episodes of illness relapse or recurrence remain
inconclusive. A recent meta-analysis examining the role of
cortisol in predicting future depressive episodes with a small
effect size, however, sensitivity analysis revealed that the
results became insignificant once applying outlier removal
and/or exclusion of low-quality studies (5). Elucidating the
neurobiological mechanisms which govern transitions in and
out of illness episodes in MDD holds importance both for
optimizing the clinical management of MDD and for guiding
the development of novel treatments that more effectively
prevent relapse and recurrence (6). Moreover, the identification
of novel peripheral biomarker signatures that predict or
correlate with relapse risk in MDD holds the potential
to complement clinical assessments in precision medicine
approaches to prognostic predictions.

Genetics plays an important role in the disease etiology of
MDD and this has been characterized by large-scale consortium
and cohort studies (7, 8). Gene-environment interactions appear
to play a particularly important role in the pathogenesis of
MDD, with early-life stress (ELS) constituting an important risk
factor for many psychiatric disorders including MDD (9). ELS
exerts its effect via epigenetic regulations and results in sustained
hypothalamic-pituitary-adrenal (HPA)-axis dysregulation (10–
12). Epigenetic regulations including deoxyribonucleic acid
(DNA) methylation, histone modification, and non-coding
RNA regulation play an important role in MDD (13–18).
microRNA (miRNA) is the most common form of non-coding
RNA and binds to the 3’-untranslated region (UTR) of its
target mRNA and modulates the mRNA transcription (19).
miRNA exists intracellularly but also in bodily fluids such as
plasma, serum, and cerebrospinal fluid (20, 21). Extracellular
exosome vesicles have been described in bodily fluid and are
signaling messages mediating cell-cell communication (22, 23).
Circulating RNAs including both the miRNA in extracellular
vesicles including exosome vesicles and vesicle-free miRNA can
be quantified easily without explicitly isolating the exosome
fraction and emerge as a new class of biomarkers (24).

The roles of circulating miRNAs have been reported
in other disease conditions such as coronary artery disease
(CAD), diabetes, cancer, and autism spectrum disorder (25–
28). In MDD, the roles of circulating miRNAs are also being

characterized. Circulating hsa-let-7e-5p, hsa-miR-125a-5p, miR-
34b-5p, miR-34c-5p, miR-451a, miR-17-5p, and miR-223-3p
were up-regulated in plasma samples from patients with MDD
and/or bipolar disorders compared to healthy controls (29–31),
while miR-320a, miR-134 and miR-144-5p were down-regulated
(29, 32, 33). The downregulation of miR-134 was also observed
in the chronic unpredictable mild stress (CUMS) rat model
of depression (33). The plasma miR-144-5p expression level
was inversely related to the Montgomery-Asberg Depression
Rating Scale (MADRS) depression score (32). Lower plasma
levels of hsa-let-7b-5p are associated with a higher future risk
of MDD (within 5 years) (34). let-7b-5p, let-7c-5p, miR-374b,
and miR-10a were also downregulated in blood, and miR-508-
3p and miR-152 were downregulated in the prefrontal cortex in
patients with MDD compared to controls (35–37). Among these
miRNAs, miR-34b-5p and miR-34c-5p expression levels were
negatively correlated with NOTCH1 (30), while GRIN2A and
DISC1 are the predicted targets for miR-320a and SLC17A7 is
the predicted target for miR-451a, miR-17-5p, and miR-223-3p
(29). There are quite some miRNAs implicated, and consistent
players are yet to be revealed as more studies are conducted
allowing for meta-analysis.

In this study, we used an MDD sample to study the
relationship between circulating miRNA in serums and the
future risk of relapse. Understanding biomarkers predicting
future relapse episodes are useful in identifying the subjects with
a worse disease course and has prognostic potential.

Materials and methods

Study cohort

A total of 217 blood serum samples from patients
with MDD were collected from the observational clinical
study, OBSERVEMDD0001 (ClinicalTrials.gov Identifier:
NCT02489305), in which patients were prospectively followed
for a maximum of 2.8 years for relapse detection. The
entrance criteria included requirements that participants met
the Diagnostic and Statistical Manual of Mental Disorders
(DSM)-V criteria for non-psychotic, recurrent MDD, and had
experienced the onset of the most recent major depressive
episode within the 24 months before screening. In addition,
patients must have been receiving an oral antidepressant
pharmacotherapy (at an approved therapeutic dose) to which
they had recently responded or remitted (within the past
3 months), as documented by a MADRS total score of ≤ 14
at both the screening and baseline visits. The serum samples
used for the miRNA assays were drawn from the participants
at either a baseline visit or follow-up visit. The mean sample
storage duration prior to the assay is presented in Table 1.
For both subjects who relapsed and those who did not relapse
during the observational follow up phase, the miRNA assay
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was obtained for only a single time point; for the participants
who ultimately relapsed, the biosample used for the assay was
drawn before the relapse event (the mean time interval between
sampling and relapse declaration appears in Table 1).

A relapse event was defined by the occurrence of any of
the following: (a) MADRS total score greater than or equal to
22 on at least two consecutive visits, with an interval of 1-
2 weeks; (b) Hospitalization for worsening of depression; (c)
Suicidal ideation with intent or suicidal behavior, and (d) as
determined by the clinical investigator. In addition, a single
occurrence of MADRS total score ≥ 22 not verified by a follow-
up visit within two weeks was also considered a relapse if it was
followed by a verification visit (within 23 days) and (i) CGI-S
change-from-baseline = 2 or (ii) Medication change suggestive
of worsening symptoms (increased dose or augmentation)
within 14 days of MADRS = 22 (14-day window preceding or
following MADRS = 22). The relapse events were confirmed by
adjudication from clinicians.

Blood collection and serum processing

Patients were instructed to adhere to a low-fat diet on
the day of sample collection. A volume of 8.5 ml blood was
collected via venipuncture using a gold top serum separation
tube (SST). The clinical sites were instructed to thoroughly mix
the blood with the clotting activation agent by inverting the
tube no less than five times and to allow the blood to clot for
at least 30 min. The blood tube then was centrifuged at room
temperature [minimum of 1,500 g for 15–20 min] until clot and
serum were separated by a well-formed polymer barrier. The
serum was aliquoted to four cryovials to minimize the freeze and
thaw cycle and frozen.

Serum microRNA quantitative
polymerase chain reaction assay

The absolute expression (copy numbers) of 575 candidate
miRNAs were quantified in each patient and control
biospecimen using ID3EAL miRNA Discovery Platform
using a miRNA-specific RT-qPCR assay (MiRXES, Singapore)
via a controlled workflow described in detail previously (38).
Total RNA from 200 µl of patient serum specimen was isolated
using miRNeasy serum/plasma miRNA isolation kit (Qiagen,
Germany). Two sets of synthetic spike-in miRNA controls
(three each at high, medium, and low concentration) were
added to samples before RNA isolation and before RT-qPCR
to monitor and normalize technical variations throughout the
entire experiment. The absolute expression of each miRNA was
normalized using calibrated spike-in controls and determined
for each patient’s serum sample (expressed as log 2 copy

number/ml serum). The samples were assayed across two
plates in this study.

Data preprocessing and statistical
analysis

For samples below the lowest level of detection (and
therefore missing), it was set to a plate-level minimum where
feasible. miRNA with greater than 90% missingness were
excluded from the statistical analysis.

Although this is an absolute miRNA quantification assay, we
used R package variancePartition (v1.20.0) (39) to understand
the source of variation in the qPCR experiment. Factors such
as age, gender, race, plate, sample age, and relapse status were
considered (Supplementary Figure 1). The relapse status was
analyzed both in a linear regression framework and in a cox
regression survival analysis framework. For the binary endpoint,
a linear model was fitted using R package limma (v3.46.0) (40)
to identify miRNA predicting relapse status in the observational
follow-up phase, while correcting for age, gender, and plate.
miRNA associated with relapse status with a false discovery rate
of less than 0.1 was reported. For the top miRNA identified,
a Cox proportional hazards regression model using R package
survival (v3.2-7) (41, 42) was also fitted to leverage the time to
event information, and the miRNA level was also categorized as

TABLE 1 Demographic and clinical characteristics of the samples.

Relapser
(n = 63)

Non-
relapser
(n = 154)

N (%)

Sex

Female 41 (65.1) 111 (72.1)

Race

White 51 (81.0) 127 (82.5)

Black or African
American

8 (12.7) 19 (12.3)

Asian 0 (0) 4 (2.6)

American Indian or
Alaska Native

1 (1.6) 0 (0)

Multiple 0 (0) 2 (1.3)

Other 1 (1.6) 2 (1.3)

Not Reported/Unknown 2 (3.2) 0 (0)

Mean (SD)

Age, years 45.59 (12.64) 42.78 (12.96)

Sample was taken before
event/censor, weeks

16.9 (11.6) 8.6 (9.1)

Sample age, years 4.73 (0.41) 3.90 (0.69)

MADRS score at the time
of blood draw

8.25 (5.17) 5.47 (5.37)
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FIGURE 1

Volcano plot. logFC for relapser vs. non-relapser was plotted against -logP, where P is the association p-value.

low, medium, and high expressed level for Kaplan–Meier curve
plotting using R package survminer (v0.4.9) (43).

Over-representation analysis of
putative targets of differentially
expressed microRNAs

Ingenuity Knowledge Base (QIAGEN, Redwood City, CA,
United States) is a database with curated and integrated miRNA
targets from various sources and literature [miRecords (44),
TarBase (45), TargetScan (46), and Ingenuity Expert Findings]
and classified the targets into three groups: experimentally
observed, predicted with high confidence [cumulative weighted
context score (CWCS) less than -0.4 for TargetScan v7.2],
and predicted with moderate confidence (CWCS between -
0.2 and -0.4 for TargetScan v7.2). Over-representation analysis
(ORA) (47) of experimentally observed targets from Ingenuity
Knowledge Base and a few manually curated targets were
performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (48) and R package clusterProfiler
v3.18.1 (49). ORA was performed using additionally performed

TABLE 2 microRNA (miRNA) associated with relapse status
with FDR <0.1.

logFC AveExpr t P-value adj.P.Val

hsa-miR-199b-5p -0.58 16.59 -3.69 0.000288 0.07

hsa-miR-215-5p -0.47 16.19 -3.41 0.000783 0.07

hsa-miR-200a-3p -0.36 17.03 -3.41 0.000783 0.07

hsa-miR-143-3p -0.45 21.10 -3.27 0.001249 0.09

using the Gene Set Enrichment Analysis (GSEA) resource1

which assumes a broader background gene set and test
overrepresentation at higher levels of the ontology hierarchy.
Gene ontology databases used included c2.cp and c5 subsets of
Molecular signatures database (MSigDB) (50).

Results

The demographic and clinical characteristics of the
participant sample are described in Table 1. Of 217 participants,
63 (29.0%) relapsed. The average MADRS score at the time of
blood draw for subjects who relapsed during the follow-up phase
is 8.25 ± 5.17, and the relapse event occurred 16.9 ± 11.6 weeks
later on average. The average MADRS score at the time of blood
draw for subjects who were censored (i.e., did not relapse during
the follow-up phase) is 5.47 ± 5.37, and the censor occurred
8.6 ± 9.1 weeks later on average.

Of the 575 miRNAs profiled with this technology, 287
miRNAs passing the 90% missingness filtering were included in
the statistical analysis. Four miRNAs were nominally associated
with relapse status during the follow-up phase (false discovery
rate (FDR) adjusted p-value < 0.1, Figure 1 [volcano plot]
and Table 2). Specifically, lower levels of hsa-miR-199b-5p
(Figure 2A and Supplementary Figure S3A), hsa-miR-215-5p
(Figures 2B, 3B), hsa-miR-200a-3p (Figures 2C, 3A), hsa-miR-
143-3p miRNA (Figure 2D and Supplementary Figure S3B)
were associated with risk of future relapse (Table 2). Overall,
more miRNAs trended toward being down-regulated than up-
regulation in the subgroup who relapsed versus the subgroup

1 https://www.gsea-msigdb.org/gsea/msigdb/compute_overlaps.jsp
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who did not relapse. The experiment used a balanced block
design (Supplementary Figure 1 and the design table for the
study) to minimize technical artifacts. Except a few miRNAs,
none of the factors examined explained a significant proportion
of the total variability of miRNA expression levels. For the
four miRNAs identified, the variance fractions explained by
plate or other factors did not dominate the total variance
explained (Supplementary Figure 2). For example, for hsa-
miR-199b-5p, 5% of the variance was explained by the risk of
future relapse, while 0.074, 2.73, 3.32, 0.18, and 0.038% of the
variances were explained by sex, age, race, sample age, and plate,
respectively. Using the Cox proportional hazard regression
framework, all four miRNAs were significant with p < 0.05
(Supplementary Table 1).

Ingenuity Knowledge Base revealed 44 unique
experimentally validated targets of the four miRNAs identified
and two of them, ZEB1 and ZEB2, were targets for both
hsa-miR-215-5p and hsa-miR-200a-3p (Supplementary
Table 2). Enrichment analysis of these experimentally
validated targets augmented by additional manual curation
of the literature revealed 112 significantly enriched pathways
from KEGG database using clusterProfiler (Supplementary
Table 3 and Figures 4A–C), including the MAPK signaling
(p = 6.18 × 10−6, q-value = 3.84 × 10−5), neurotrophin
signaling (p = 1.66 × 10−5, q-value = 7.26 × 10−5), vascular
endothelial growth factor (VEGF) signaling (p = 1.55 × 10−4,
q-value = 4.22 × 10−4), relaxin signaling (p = 3.11 × 10−4,
q-value = 6.80 × 10−4), and cellular senescence pathways
(p = 6.52 × 10−6, q-value = 3.84 × 10−5). A full list
of both experimentally validated targets and predicted
targets from Ingenuity Knowledge Base is provided in
Supplementary Table 4. ORA using GSEA additionally
revealed gene sets such as neurogenesis (p = 3.33 × 10−13,
FDR q-value = 1.91 × 10−10) and response to cytokine
(p = 8.30 × 10−10, FDR q-value = 1.55 × 10−7; see
Supplementary Table 5). Additional enriched pathways from
canonical databases are provided in Supplementary Table 6
and these included the MAPK pathway from BIOCARTA,2

the MAPK signaling pathway from WIKI Pathways,3 and
the MAPK signaling pathway from KEGG (48, 51) that
was also identified by the clusterProfiler analysis using the
same KEGG database.

Discussion

In this study, we evaluated the relationship between
circulating miRNA and the future relapse status and identified
four miRNAs nominally associated with the relapse status

2 http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=
CP:BIOCARTA

3 http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=
CP:WIKIPATHWAYS

with FDR less than 0.1. Enrichment analysis of experimentally
validated targets of these four miRNAs revealed 112 statistically
significant pathways enriched among the experimentally
validated targets of these four miRNAs, including neurogenesis,
response to cytokine, neurotrophin signaling, VEGF signaling,
relaxin signaling, and cellular senescence pathways, which were
implicated in MDD previously.

Higher expression level of four miRNAs (hsa-miR-199b-
5p, hsa-miR-143-3p, hsa-miR-200a-3p, and hsa-miR-215-5p)
identified as being nominally associated with lower risk of future
MDD relapse in this study. Hsa-miR-199b-5p was implicated in
neurogenesis, MAPK signaling, and BDNF signaling pathways,
all of which were statistically enriched among the experimentally
validated targets of the four miRNAs identified in the current
study. The hsa-miR-199b-5p expression level increases during
early brain development (52). Compared to healthy control, hsa-
miR-199b-5p was up-regulated in neural progenitor cells and
neurons differentiated from iPSC of patients with Rett syndrome
(RTT) carrying mutations in the methyl-CpG-binding protein
2 (MECP2) gene (52). MECP2 has been implicated in RTT,
a neurodevelopment disorder, and other neuropsychiatric
conditions including depression and cocaine abuse (53). iPSC
derived from MECP2 mutants was defective in neurogenesis,
and overexpression of hsa-miR-199b-5p resulted in a similar
phenotype (52). In contrast, inhibition of hsa-miR-199b-5p
could partially rescue the MECP2 deficiency (52). Thus hsa-miR-
199b-5p was placed in a neurogenesis pathway downstream of
MECP2 and its function was mediated via extracellular signal-
regulated kinase (ERK/MAPK) (52). As such MAPK signaling
pathway was enriched among the experimentally validated
miRNA targets including mitogen-activated protein kinase
1 (MAPK1), mitogen-activated protein kinase 7 (MAPK7),
mitogen-activated protein kinase 12 (MAPK12), mitogen-
activated protein kinase kinase 4 (MAP2K4), protein kinase
cAMP-activated catalytic subunit beta (PRKACB), KRAS proto-
oncogene, GTPase (KRAS), transforming growth factor beta 2
(TGFB2), and Rac family small GTPase 1 (RAC1). MAP2K4
is a target of hsa-miR-200a-3p, while MAPK7 and MAPK12
are targets of hsa-miR-143-3p according to the curations from
Ingenuity Knowledge Base.

MeCP2 protein contributes to ELS-dependent epigenetic
programming as phosphorylation of MeCP2 leads to
hypomethylation of corticotropin releasing hormone (CRH),
arginine vasopressin (AVP), and proopiomelanocortin (POMC,
encoding a prohormone for adrenocorticotropic hormone
(ACTH), a key mediator of the adrenocortical response to
stress), and upregulation of these transcripts and ultimately
enhancement of HPA-axis activity (54–57).

MECP2 regulates the expression of the brain-derived
neurotrophic factor (BDNF) gene and genes modulating
neuronal physiology such as calcium/calmodulin-dependent
kinase CAMK2D and the voltage-gated potassium channel
KCNH7, and genes involved in axon guidance and synapse
formation such as EPHA7, SDK1 and CNTN4 (58–60). Mice
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FIGURE 2

Violin plots for the differentially expressed miRNA (FDR < 0.1) between patients who relapsed during the follow-up phase (1) vs. those who did
not (0).

FIGURE 3

Kaplan–Meier curves for (A) hsa-miR-200a-3p, (B) hsa-miR-215-5p.

expressing a truncated version of MeCP2 display anxiety-like
phenotype and has abnormal stress response and elevated
serum corticosterone levels, as the truncated form of MeCP2
fails to bind to the CpG rich promoter region of the
CRH gene (54). In addition, mice carrying a genetic knock-
in mutation that eliminates the phosphorylation site of
MeCP2 also exhibit depressive-like behaviors and do not
respond to chronic imipramine treatment (61). Decreased levels
of MeCP2 and BDNF were detected in the hippocampus
in a preclinical CUMS-induced rat model for depression

and in the blood of depressed patients (62). Escitalopram
improves the expression of MeCP2 in the CUMS depression
model (63). Among the targets of differentially expressed
miRNA, the BDNF signaling pathway was also enriched
(Supplementary Table 6).

Hsa-miR-199b-5p is likely implicated in inflammation as it
was reported to be correlated with absolute neutrophil count
(64) and upregulated in tuberculosis patients (65). The immune
pathways (Th1 and Th2 cell differentiation, IL-17 signaling
pathway, tuberculosis, TNF signaling pathway, and T cell
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FIGURE 4

KEGG gene set enrichment analysis results. Targets of miRNA were plotted against the enriched pathway (A). Selected enriched gene sets were
also plotted with p-value (B) and gene ratio (C) on x-axis.
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receptor signaling pathway in Supplementary Table 2) were
also enriched in our study.

Hsa-miR-215-5p is another miRNA differentially expressed
in the current study. It was up-regulated in the synaptosome
in MDD in a human postmortem brain study where synaptic
and total tissue fractions were obtained from the dorsolateral
prefrontal cortex (dlPFC) of MDD and healthy patients (66).
In our study lower expression levels of hsa-miR-199b-5p and
hsa-miR-215-5p were associated with worse disease course (i.e.,
relapse in the follow-up phase).

MiR-200a-3p, another miRNA differentially expressed in
the current study, was proposed to be a biomarker of central
sensitization in chronic pain and depression. In unpredictable
chronic mild stress (UCMS) and spared nerve injury (SNI)
to illicit depressive-like and chronic pain behavior, miR-200a-
3p was reduced 4 weeks after chronic stress in the prefrontal
cortex (67). Pathways such as the glucocorticoid receptor (GR)
signaling pathway and neurogenesis were positively regulated
by miR-200a-3p after 4 weeks of stress, reflecting the activation
of the HPA axis to overcome the stress (67). In our study,
miR-200a-3p was downregulated in patients prone to relapse,
consistent with the lower expression level when the rats
exhibited depressive-like phenotype.

In rheumatoid arthritis (RA), increased expression of
miR−143−3p is accompanied by promoting cell proliferation,
inflammatory cytokine secretion, and inhibiting apoptosis (68),
which is in contrast to a study using an Alzheimer’s disease (AD)
cell model where miR-143-3p inhibition promotes neuronal
survival (69). In the current study, a lower expression level of
miR−143−3p was associated with future relapse. miR−143−3p
inhibition also suppressed the Ras/p38 mitogen activated
protein kinase (MAPK) signaling pathway, whereas TNF−α

treatment stimulated it (68). TNF signaling pathway was also
enriched in this study (Supplementary Table 2).

The study has several limitations which merit comment.
Firstly, even though we report four miRNAs associated with
future relapse status with a false discovery rate of less than
10%, we did not observe any miRNAs with FDR less than
5%. Secondly, the field has half a dozen studies on circulating
miRNA for comparing MDD vs. healthy control, however, there
is still no consensus on the definitive miRNAs associated with
MDD, most likely owing to the effect size and that individual
study did not have the power to unequivocally nominate
the miRNA that can be replicated. Our study sample size
is modest and will certainly benefit from future replication
and/or meta-analysis studies examining the same endpoint.
Third, the differences in miRNAs between the group who
relapsed versus those that did not were based on a single
time point, and the specific time course of the findings in
relation to the course of depression was not established.
Fourth, the differences associated with subsequent relapse have
multiple possible interpretations. For example, they may reflect
pathophysiological correlates which contribute to the process

of impending relapse or compensatory changes in response to
other factors which drove the relapse propensity.

In summary, we have identified four candidate miRNAs
associated with risk of future risk and identified statistically
significant pathways enriched among genes targeted by these
miRNAs. Future experiments are needed to further shed
light on the role and dysregulation of these candidate
miRNAs in depression.
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