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ABSTRACT
BACKGROUND: Peripheral inflammation is often associated with major depressive disorder (MDD), and immuno-
logical biomarkers of depression remain a focus of investigation.
METHODS: We used microarray data on whole blood from two independent case-control studies of MDD: the
GlaxoSmithKline–High-Throughput Disease-specific target Identification Program [GSK-HiTDiP] study (113 patients
and 57 healthy control subjects) and the Janssen–Brain Resource Company study (94 patients and 100 control
subjects). Genome-wide differential gene expression analysis (18,863 probes) resulted in a p value for each gene
in each study. A Bayesian method identified the largest p-value threshold (q = .025) associated with twice the
number of genes differentially expressed in both studies compared with the number of coincidental case-control
differences expected by chance.
RESULTS: A total of 165 genes were differentially expressed in both studies with concordant direction of fold change.
The 90 genes overexpressed (or UP genes) in MDD were significantly enriched for immune response to infection, were
concentrated in a module of the gene coexpression network associated with innate immunity, and included clusters
of genes with correlated expression in monocytes, monocyte-derived dendritic cells, and neutrophils. In contrast, the
75 genes underexpressed (or DOWN genes) in MDD were associated with the adaptive immune response and
included clusters of genes with correlated expression in T cells, natural killer cells, and erythroblasts. Consistently,
the MDD patients with overexpression of UP genes also had underexpression of DOWN genes (correlation . .70
in both studies).
CONCLUSIONS: MDD was replicably associated with proinflammatory activation of the peripheral innate immune
system, coupled with relative inactivation of the adaptive immune system, indicating the potential of transcriptional
biomarkers for immunological stratification of patients with depression.
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Depression and inflammation are often associated with one
another. Depressive symptoms in a large population sample
were significantly related to blood concentrations of C-reactive
protein (CRP; odds ratio w1.8 for depressive symptoms in
people with CRP . 3 mg/L vs. CRP , 1 mg/L) (1). Multiple
case-control studies of major depressive disorder (MDD) have
reported increased peripheral blood concentrations of CRP
(Cohen’s d w0.50) and proinflammatory cytokines such as
interleukin 6 (d w0.50) and tumor necrosis factor (d w0.40) in
MDD (2,3). The prevalence of comorbid depression is
increased in many nonpsychiatric inflammatory disorders (4).

There is growing evidence for a causal effect of inflamma-
tion on depression. Peripheral inflammation precedes the
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emergence of depressive symptoms in longitudinal epidemi-
ological studies (5) and in about 30% of patients receiving
proinflammatory interferon-a treatment for hepatitis C (6,7).
Experimental challenge with peripheral proinflammatory stimuli
in animals robustly induces a syndrome of illness behavior and
anhedonia that approximates depressive symptoms (8).
Peripheral immune cells and cytokines are known to mediate
signals across the blood-brain barrier by several mechanisms
(9). Activation of microglia can locally amplify the effects of
even a weak peripheral proinflammatory signal on neuronal
function and behavior (10).

These observations suggest that pharmacological
disruption of peripheral proinflammatory signals could be
icle under the
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therapeutically effective, at least for a subgroup of patients
with depression. However, it is most unlikely that any single
anti-inflammatory drug will prove to be superior to all existing
treatments for all patients (11). Only about a third of patients
with depression have biological evidence for peripheral
inflammation [e.g., CRP . 3 mg/L (12)], and an anti-
inflammatory drug seems likely a priori to be most effective
for an inflamed subgroup of patients with depression. There
are many markers of the peripheral immune system that can be
conveniently measured in venous blood samples from patients
with depression, including cytokines, CRP, and other proteins;
cell counts from flow cytometry; and gene transcription (13).

Transcriptional (messenger RNA [mRNA]) biomarkers have
the potential advantages of assay stability (compared with
cytokines) and target specificity (compared with cell counts).
However, previous case-control studies of peripheral blood
gene expression and MDD have been inconsistent (14–18)
(Supplemental Table S1). To date, the Netherlands Study of
Depression and Anxiety (NESDA) (14) is the largest single
case-control study of the peripheral blood transcriptome in
MDD (882 current patients with MDD, 635 remitted patients
with MDD, and 331 control subjects). The NESDA reported
statistically significant (false discovery rate [FDR] = 10%) dif-
ferential expression of 129 genes enriched for interleukin 6 and
natural killer (NK) cell signaling pathways (19).

We were primarily motivated by the hypothesis that MDD is
associated with peripheral blood transcriptional markers of
innate immune system activation (8,20). We were also con-
cerned to focus on results that were more likely to replicate
across case-control studies of gene expression in MDD. We
report Affymetrix microarray data on 18,863 probes from two
independently designed and conducted case-control studies
of MDD. We used a Bayesian method to identify genes that
were differentially expressed in both studies. Focusing on a
consensus set of 165 genes, we investigated the functional
significance of the genes that were differentially (over- or
under-) expressed in cases compared with controls. We also
explored the secondary hypothesis that innate immune system
activation is coupled to relative inactivation of the adaptive
immune system in patients with MDD (21–23).
METHODS AND MATERIALS

Samples

We analyzed data from two case-control studies of depres-
sion: the GlaxoSmithKline–High-Throughput Disease-specific
target Identification Program (GSK–HiTDiP) study and the
Janssen–Brain Resource Company (Janssen–BRC) study.
Other aspects of these studies have been previously reported
(24–28); demographic and clinical details on the samples are
provided in Supplemental Table S2.

GSK–HiTDiP. This study was designed primarily to test for
an association between genetic (DNA) variation and diagnosis
of depression. Minimal sociodemographic and clinical data
were collected, but microarray data were available for analysis
(after quality control) from whole-blood samples stored for less
than 6 years on a sample comprising 113 patients with MDD
prospectively balanced for comorbid anxiety disorder [57 with
Biologica
generalized anxiety disorder diagnosed by the Mini-
International Neuropsychiatric Interview (29) and 56 without
anxiety disorder] and 57 healthy control subjects. All partici-
pants provided informed consent in writing. The study was
approved by an independent ethics review board.

Janssen–BRC. This study was designed primarily for
biomarker discovery. Microarray data were available for anal-
ysis (after quality control) from whole-blood samples stored for
less than 1 year on a sample comprising 94 patients with MDD
(40 with generalized anxiety disorder diagnosed post hoc by the
Mini-International Neuropsychiatric Interview and 54 without
anxiety disorder) and 100 healthy control subjects. Additional
data on melancholic symptom severity, anxiety, substance use,
and body mass index (BMI) were available for patients with
MDD. All participants provided informed consent in writing. The
study was approved by an independent ethics review board.

Whole-blood samples from both studies were analyzed
using the Affymetrix Human Genome U133 plus 2.0 array. We
applied identical quality control, normalizing, and annotation
algorithms to the two datasets, resulting in the estimation of
mRNA expression at each of 18,863 unique probes for each
participant.

Differential Expression Analysis

To determine differential gene expression between cases and
controls, we adopted the same strategy for both studies; see
Supplemental Figure S1 for a schematic overview of the data
analysis strategy. For each gene i = 1, ., 18,863, we fitted a
linear regression model that included group (coded Gr; two-
level factor, case/control), batch (B; two-level factor, 1/2),
gender (Ge; two-level factor, male/female), age (Ag; contin-
uous), and presence/absence of anxiety (An; two-level factor,
0/1) as covariates. Denoting samples by j = 1, ., n and the
design matrix by X, the model is

yij ¼ bi01
X2

k¼1

bGrik x
Gr
jk 1

X2

l¼1

bBil x
B
jl 1

X2

m¼1

bGeim xGejm 1bAgi xAgj

1
X2

r¼1

b
An
ir xAnjr 1εi;

(1)

where εi w N(0, si
2). For identifiability, we imposed the con-

trasts bGri1 ¼ bBi1 ¼ bGei1 ¼ bAni1 ¼ 0 on model parameters. The
model was fitted using the R package limma (30). Subse-
quently, we tested the null hypothesis Hi0: bi2

Gr = 0; that is,
there is no difference in expression of the ith gene between the
two groups using the moderated t statistic (31). For each of the
18,863 probes in each study, the p value was generated using
the asymptotic approximate distribution (and also nonpara-
metrically by a permutation algorithm; see Supplemental
Tables S3 and S4).

Combining p Values for Differential Gene
Expression From Two Studies

To identify MDD-related genes that were replicated in both the
GSK–HiTDiP and Janssen–BRC datasets, we set the p-value
threshold for significance of differential expression of each
gene in each study to optimize in some sense the number of
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genes that were differentially expressed in both studies
compared with the number of coincidental differences ex-
pected by chance. To do this, we used the method of Blan-
giardo and Richardson (32), implemented in the R package
sdef (33), and specified the p-value threshold as q2, which
represents the largest (most lenient) p value , .05 for which
there are at least twice as many significant case-control dif-
ferences in common between the two studies as expected by
chance.

Gene Coexpression Network Analysis

We used weighted gene correlation network analysis (34) to
construct a normative coexpression network in which
nodes represent genes and weighted edges represent
correlations between the expression of pairs of genes in
healthy control subjects (34). To maximize the amount of
data available for this estimation, and to ensure that the
resulting network was representative of both studies, we
included the healthy control data from both the GSK–
HiTDiP and Janssen–BRC studies (N = 157 in total). We
used the consensus weighted gene correlation network
analysis method to construct a weighted undirected graph
that could be decomposed into a set of modules of
strongly coexpressed genes (34). Eigengenes were used to
test for case-control differences in the gene expression
profile on average within each module of the normative
weighted gene correlation network analysis transcriptome
(Supplemental Table S11).

Gene Ontology Enrichment Analysis

We performed enrichment analysis for various gene lists
such as the list of genes differentially expressed in both
studies and the list of genes comprising each module of the
coexpression network. We used the R package topGO (35)
to determine whether these lists were significantly enriched
for specific Gene Ontology (GO) terms (36) using a stringent
Bonferroni correction (q , .05) for multiple comparisons
across all 10,124 terms, resulting in a p-value threshold of
4.94 3 1026.

Protein–Protein Interaction Mapping

We used the Search Tool for the Retrieval of Interacting
Genes/Proteins [http://string-db.org (37)] to determine the
network of known protein–protein interactions among the
genes differentially expressed in both studies (38).

Cell Type–Specific Gene Expression Analysis

We investigated the genes differentially expressed in both
studies in relation to a third independent microarray (Affy-
metrix) dataset designed to examine cell type–specific
expression patterns (39). In particular, we focused on the
expression of MDD-related genes across 37 sorted cell
samples of the following immune cell types: erythroblasts
(8 samples), monocytes (6 samples), monocyte-derived
dendritic cells (5 samples), neutrophils (3 samples), B cells
(4 samples), CD41 T cells (5 samples), CD81 T cells
(5 samples), and NK cells (6 samples). We used the Bio-
Layout Express3D software (40,41) to visualize clusters or
72 Biological Psychiatry January 1, 2018; 83:70–80 www.sobp.org/jou
subgroups of genes that shared similar patterns of expres-
sion across different cell types.
RESULTS

Combining Differential Expression Across Two
Case-Control Studies of MDD

Separate differential expression analyses of the GSK–HiTDiP
and Janssen–BRC datasets yielded two lists of p values for
the same set of 18,863 gene expression probes (Supplemental
Tables S3 and S4). The Bayesian method identified q2 = .0246
as the largest p value threshold associated with twice the
number of genes differentially expressed in both studies
compared with the number of coincidental case-control dif-
ferences expected by chance. At this threshold, 173 genes
were differentially expressed in both studies. We further refined
this gene list by restricting attention to the 165 consensus
genes (95%) that showed the same direction of over-
expression (UP) or underexpression (DOWN) in the two case-
control studies (Supplemental Table S5).

These findings were corroborated by Fisher’s chi-square
test for combining p values, which identified 393 genes that
were differentially expressed in both studies with FDR = 10%,
of which 146 were included in the list of replicably, concor-
dantly, differentially expressed genes defined by Bayesian
analysis (Supplemental Table S6).

Furthermore, the set of 165 replicably concordant genes
(henceforth the MDD-165 consensus set) was partially
corroborated by the prior results of the NESDA case-control
study (14). Considering the 15,830 genes that were
measured by the microarrays used in all three studies (NESDA,
Janssen–BRC, and GSK–HiTDiP), 150 of the MDD-165
consensus set were included, of which 7 genes (CD247,
PRKCH, PGLYRP1, NFATC2, ST6GAL1, MAPK14, and
MTSS1) were also differentially expressed, with the same sign
of fold change, in the NESDA study at FDR = 5%. When the
FDR threshold for the NESDA study was relaxed to 10% and
20%, 18 and 45 of the 150 genes differentially expressed in
both the GSK–HiTDiP and Janssen–BRC studies, respectively,
were also differentially expressed in the NESDA study
(Supplemental Table S5). By comparison, we expect by
chance to find 1.95, 8.30, and 30.40 genes in common with the
NESDA study at FDR thresholds of 5%, 10%, and 20%,
respectively. In contrast, there was less overlap between the
MDD-165 consensus set and the top 29 most significantly
differentially expressed genes reported in another large case-
control study of MDD (16); only SRSF5 was underexpressed
in both of these lists.

To assess the robustness of our results to key modeling
assumptions, we conducted two sensitivity analyses. First,
we repeated the analysis using a model for differential
expression that did not include comorbid anxiety as an
explanatory factor. Only 24 genes were identified by Bayesian
analysis as significantly coexpressed; of these 24 genes, 21
were concordant for sign of fold change, and 15 of these 21
genes were also included in the MDD-165 consensus set
(Supplement). The reduced sensitivity when not adjusting for
anxiety likely reflects the importance of refining or homoge-
nizing the clinical phenotype in the search for biomarkers.
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Second, we repeated the analysis using a model for differ-
ential expression that included BMI as a covariate. BMI was
not measured in the GSK–HiTDiP study, so this analysis was
restricted to 74 patients and 80 control subjects from the
Table 1. Enrichment Analysis of the MDD-165 Consensus Set
Underexpressed (DOWN) in Patients With MDD Compared W
Janssen–BRC Studies

Rank GO:ID Term

Overexpressed UP (Innate Immunity)

1 GO:0009617 Response to bacterium

2 GO:0042742 Defense response to bacterium

3 GO:0043207 Response to external biotic stimulus

4 GO:0051707 Response to other organism

5 GO:0009607 Response to biotic stimulus

6 GO:0002376 Immune system process

7 GO:0006955 Immune response

8 GO:0098542 Defense response to other organism

9 GO:0051704 Multi-organism process

10 GO:0050832 Defense response to fungus

11 GO:0032496 Response to lipopolysaccharide

12 GO:0002237 Response to molecule of bacterial origin

13 GO:0006952 Defense response

14 GO:0009605 Response to external stimulus

15 GO:0045087 Innate immune response

16 GO:0009620 Response to fungus

17 GO:0019731 Antibacterial humoral response

18 GO:0031640 Killing of cells of other organism

19 GO:0044364 Disruption of cells of other organism

20 GO:0019730 Antimicrobial humoral response

Underexpressed DOWN (Adaptive Immunity)

1 GO:0050851 Antigen receptor-mediated signaling path

2 GO:0046649 Lymphocyte activation

3 GO:0009059 Macromolecule biosynthetic process

4 GO:0034645 Cellular macromolecule biosynthetic proc

5 GO:0010557 Positive regulation of macromolecule bio

6 GO:0032774 RNA biosynthetic process

7 GO:0046631 Alpha-beta T cell activation

8 GO:0016070 RNA metabolic process

9 GO:0050776 Regulation of immune response

10 GO:0006351 Transcription, DNA-templated

11 GO:0097659 Nucleic acid-templated transcription

12 GO:0042110 T cell activation

13 GO:0070489 T cell aggregation

14 GO:0071593 Lymphocyte aggregation

15 GO:0031328 Positive regulation of cellular biosyn

16 GO:0002562 Somatic diversification of immune recept

17 GO:0016444 Somatic cell DNA recombination

18 GO:0070486 Leukocyte aggregation

19 GO:0045893 Positive regulation of transcription, DN

20 GO:1903508 Positive regulation of nucleic acid-temp

The top 20 GO terms for biological processes are ranked according to th
correction specifies a p-value threshold of p = 4.94 3 1026 to achieve signifi
given that many of the GO terms are correlated; however, the top 17 term
Bonferroni correction.

GO, Gene Ontology; GSK–HiTDiP, GlaxoSmithKline–High-Throughput D
Brain Resource Company; MDD, major depressive disorder; MDD-165 con

Biologica
Janssen–BRC dataset. Inclusion of BMI in the model tended
to increase the p values for MDD-related differences, and
only 73 genes in the MDD-165 consensus set were differ-
entially expressed at the probability threshold q2 = .0246
of Genes That Were Differentially Overexpressed (UP) or
ith Healthy Control Subjects in Both GSK–HiTDiP and

Annotated Found Expected Fisher’s Test

405 19 2.29 7.7e-13

164 13 0.93 7.0e-12

651 20 3.69 3.7e-10

651 20 3.69 3.7e-10

680 20 3.85 8.0e-10

2149 35 12.17 9.8e-10

1310 26 7.42 6.3e-09

351 14 1.99 9.1e-09

2176 32 12.32 9.2e-08

21 5 0.12 9.7e-08

253 11 1.43 1.7e-07

265 11 1.5 2.8e-07

1372 24 7.77 3.2e-07

1947 29 11.02 3.8e-07

820 18 4.64 5.5e-07

34 5 0.19 1.3e-06

23 4 0.13 7.8e-06

25 4 0.14 1.1e-05

25 4 0.14 1.1e-05

27 4 0.15 1.5e-05

133 5 0.59 0.00029

532 9 2.34 0.0005

4336 32 19.09 0.00052

4183 31 18.42 0.00064

1361 15 5.99 0.00066

3275 26 14.42 0.00086

99 4 0.44 0.00094

3873 29 17.06 0.00095

721 10 3.18 0.00112

3161 25 13.92 0.00122

3177 25 13.99 0.00131

382 7 1.68 0.0014

382 7 1.68 0.0014

384 7 1.69 0.00144

1470 15 6.47 0.00147

52 3 0.23 0.00154

52 3 0.23 0.00154

390 7 1.72 0.00158

1178 13 5.19 0.00161

1178 13 5.19 0.00161

eir p values by Fisher’s exact test for significant enrichment. Bonferroni
cance at q , 0.05. Such a correction is well known to be too stringent
s were significantly enriched in the overexpressed UP gene set after

isease-specific target Identification Program; Janssen–BRC, Janssen–
sensus set, set of 165 replicably concordant genes.

l Psychiatry January 1, 2018; 83:70–80 www.sobp.org/journal 73

http://www.sobp.org/journal/www.sobp.org/journal


Peripheral Immune Transcripts and Depression
Biological
Psychiatry
(Supplemental Figure S3). The reduced sensitivity of the
analysis including BMI as a covariate likely reflects the known
proinflammatory effect of obesity and the reduced sample
size available.

Gene Set Enrichment Analyses Across GO Terms

We conducted a series of enrichment analyses to func-
tionally characterize the MDD-165 consensus set. The top
10 most significantly enriched GO terms all were related to
the immune response to infection (Bonferroni q , .05 for the
top 9 terms) (Supplemental Table S7). Among the MDD-165
consensus set, 90 genes were overexpressed in cases
compared with controls. The UP gene list was significantly
enriched for GO terms related to the innate immune system
and response to infection (Bonferroni q , .05 for the top 17
terms) (Table 1). In addition, 75 genes were significantly
underexpressed in cases compared with controls. As we
hypothesized based on prior literature (19), this gene list was
enriched for GO terms related to the adaptive immune
system (p # 1023 for top 20 GO terms; Table 1), but there
was no significant enrichment of the DOWN genes at the
more stringent Bonferroni threshold.

Protein Interaction and Whole-Genome
Transcriptional Network Analyses

We used Search Tool for the Retrieval of Interacting Genes/
Proteins analysis (37) to visualize the network of protein–
protein interactions between the proteins coded by the
MDD-165 consensus set. These genes were significantly
enriched for protein–protein interactions (permutation test, p =
7 3 1024) that were concentrated around mitogen-activated
protein kinase 14 (MAPK14) and matrix metalloproteinase 9
(MMP9), which thus can be regarded as the most highly
interactive hubs of this immune signaling network (Figure 1).
Many of the proteins in this network are coded by genes that
were independently identified by the NESDA study as differ-
entially expressed in MDD; see Figure 1.
74 Biological Psychiatry January 1, 2018; 83:70–80 www.sobp.org/jou
We constructed a graph representing significant coex-
pression of a pair of genes (nodes) as an edge drawn be-
tween them. As previously reported (42), this whole-genome
transcriptional network or transcriptome had complex topo-
logical properties, including a community structure
comprising modules of coexpressed genes enriched for
specific GO terms (Figure 2). The UP genes were concen-
trated in the normative module (red) significantly enriched for
innate immune response GO terms (e.g., myeloid cell acti-
vation involved in immune response, q = 5 3 1025, Bonfer-
roni corrected), whereas the DOWN genes were concentrated
in a normative module (pink) specialized for translation-based
terms (Figure 2). We confirmed in a hypothesis-driven anal-
ysis that the module associated with DOWN gene expression
was also significantly enriched for adaptive immune response
terms (e.g., T-cell differentiation, p = .0002). There were sig-
nificant case-control differences in eigengene scores sum-
marizing expression of all genes within modules enriched for
innate immune response (red, p = .031; yellow, p = .015),
translation (pink, p = .002), and one additional module with no
significant enrichment terms (tan, p = .025); see Supplemental
Table S11.

Cell Type–Specific Expression Patterns for the
MDD-165 Consensus Set

To assess the cellular specificity of the MDD-165 consensus
set, we used microarray data from an independent study of
cell type–specific gene expression across eight major clas-
ses of immune cells in healthy control subjects (39).
Remarkably, 89 of the 90 UP genes formed four clusters of
gene coexpression, three of which represented strong
overexpression of a subset of UP genes in one or two
myeloid cell classes (Figure 3). Likewise, 71 of the 75 DOWN
genes formed two clusters of gene coexpression, each
representing cell-specific overexpression of a subset of
DOWN genes in one or two lymphoid or erythroblast classes
(Figure 3).
Figure 1. Protein–protein interaction network for
proteins coded by the set of 165 replicably concor-
dant genes differentially expressed in both case-
control studies of major depressive disorder.
The network is represented by an undirected
graph where links correspond to known protein–
protein interactions and weights are propor-
tional to the Search Tool for the Retrieval of Inter-
acting Genes/Proteins confidence score (38). Only
high-confidence (.0.7) links are retained, and
disconnected genes are not shown. Red (blue)
nodes correspond to genes over- (under-) expressed
in major depressive disorder in both the
GlaxoSmithKline–High-Throughput Disease-specific
target Identification Program and Janssen–Brain
Resource Company datasets. Smaller inner circles
highlight proteins that are coded by genes also
differentially expressed and with the same sign of fold
change ina third large independent case-control study
of major depressive disorder (Netherlands Study of
Depression and Anxiety [NESDA]) (14) thresholded
to control false discovery rate (FDR) at 20% (white
circles), 10% (gray circles), and 5% (black circles).
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Figure 2. Major depressive disorder (MDD)-
related genes in the context of the normative whole-
genome transcriptome. Overexpressed genes (or UP
genes) in patients with MDD are concentrated in a
module of the normative gene coexpression network
specialized for innate immune response, whereas
underexpressed genes (or DOWN genes) are
concentrated in a module partially specialized for
adaptive immune response. (A) The modules of the
normative transcriptome are highlighted in different
colors. (B) The MDD-related genes are colored
according to their normative module affiliation, and
representative genes are text-labeled. (C) The MDD-
related genes are colored green for overexpressed
(or UP) genes and are colored red for underex-
pressed (or DOWN) genes. The text labels highlight
the functions of the corresponding modules of the
normative transcriptome. rRNA, ribosomal RNA;
SRP, signal recognition particle.
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Coupled UP and DOWN Gene Expression in Patients
With MDD

To explore the extent to which UP gene overexpression was
related to DOWN gene underexpression, we estimated the
mean UP gene expression (over all 90 differentially overex-
pressed genes) and the mean DOWN gene expression (over all
75 differentially underexpressed genes) for each of 113 pa-
tients with MDD in the GSK–HiTDiP study and each of 94
patients with MDD in the Janssen–BRC study. In both studies,
UP and DOWN expression scores were strongly negatively
correlated (Figure 4), indicating that these case-control differ-
ences were coupled at the level of individual patients
(Janssen–BRC: r = 2.82, p , 1024; GSK–HiTDiP: r = 2.74,
p , 1024).

Given the strong linear relationship between UP and DOWN
gene expression in patients with MDD, we mapped each pa-
tient’s data to a point on the fitted regression line, thereby
characterizing each patient by a bioscalar that locates it on a
single axis or dimension of coupled UP/DOWN gene expres-
sion; see Figure 4A (inset). As expected, there were significant
case-control differences in the MDD-165 bioscalar in both
studies (Cohen’s d = 0.68 for GSK–HiTDiP and 0.58 for
Janssen–BRC, corresponding to a medium effect size;
Figure 4C, D), with patients on average having more positive
values, indicating a greater shift in the direction of coupled
innate activation and adaptive inactivation. Receiver operating
characteristic analysis indicated that cases and controls were
classified with an area under the curve of 0.71 for the GSK–
HiTDiP study and an area under the curve of 0.67 for the
Biologica
Janssen–BRC study (Figure 4C, D). This moderately accurate
classification performance reflects the fact that the bioscalar
distributions of cases and controls are overlapping. We also
assessed the performance of the bioscalar not to discriminate
cases from controls (which is ultimately a clinical diagnostic
decision) but rather to identify the top third “most inflamed”
patients with MDD. To do this, we defined a cutoff value for the
bioscalar corresponding to the top tertile critical value of its
distribution in each study (0.57). Participants with MDD-165 .

0.57 were classified correctly as belonging to such an inflamed
MDD subgroup (sensitivity = 100% by definition) with a high
specificity (93% and 88% in GSK–HiTDiP and Janssen–BRC
studies, respectively).

We provisionally explored correlations between the MDD-
165 bioscalar and sociodemographic or clinical differences
among the patients with MDD in the Janssen–BRC study. BMI
(r72 = .20, p = .099), the CORE total score for melancholic
symptom severity (r88 = .18, p = .097), and the presence or
absence of comorbid substance abuse disorder (two-tailed
t63 = 1.9, p = .07) were not significantly associated with bio-
scalar scores. There was a significant difference in bioscalar
scores between subgroups of patients with MDD with or
without comorbid anxiety disorder (t83 = 22.4, p = .02).

DISCUSSION

We have reported the differential expression analysis of whole-
genome microarray data from two independent case-control
studies of patients with MDD compared with healthy control
subjects. Using Bayesian methods, we identified a set of 165
l Psychiatry January 1, 2018; 83:70–80 www.sobp.org/journal 75
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Figure 3. Cell class–specific expression patterns for the set of 165 replicably concordant genes. We estimated the correlation between each possible pair of
the 165 major depressive disorder (MDD)-related genes and identified clusters of genes with similar expression patterns in an independent microarray dataset
on specific cell types. The set of 165 replicably concordant genes formed six clusters, with each cluster comprising a subset of genes that had strong mutual
coexpression across a range of eight distinct cell classes: erythroblasts, monocytes, monocyte-derived dendritic cells (MDDCs), neutrophils, B cells, CD41

T cells, CD81 T cells, and natural killer (NK) cells. (A) The six clusters of genes with strongly correlated expression profiles. Clusters 1 to 4 (left) comprised
genes that were overexpressed in MDD (or UP genes), and clusters 5 and 6 (right) comprised genes that were underexpressed in MDD (or DOWN genes).
(B) Histograms of clustered gene expression across cell types for each of the four clusters of UP genes overexpressed in MDD (from top to bottom: clusters
1–4). The x-axis color legend codes for different cell types. (C) Histograms of clustered gene expression across cell types for each of the two clusters of DOWN
genes underexpressed in MDD (from top to bottom: clusters 5 and 6). The x-axis color legend codes for different cell types.
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consensus genes that were replicably associated with MDD,
sharing the same direction of fold change in the cases
compared with controls in both studies. The robustness of
these results was further supported by comparison with the
results of the largest prior case-control microarray study of
depression, the NESDA study (14); several genes differentially
expressed in the NESDA study were likewise differentially
expressed in these data, for example, MAPK14 and MMP9.
Both of these genes were consistently overexpressed in pa-
tients with MDD and both code proteins (MAPK14 and matrix
metallopeptidase 9) that were hubs of a network of interactions
between immune signaling proteins coded by many of the
other differentially expressed genes. A MAPK14 inhibitor has
76 Biological Psychiatry January 1, 2018; 83:70–80 www.sobp.org/jou
been tried for treatment of major depression but did not
demonstrate consistently significant effects on symptom rating
scales compared with placebo at the single dose tested (43).

The consensus set of 165 genes associated with MDD was
divided into two approximately equal-sized subsets; here, 90
so-called UP genes were overexpressed in patients and 75 so-
called DOWN genes were underexpressed in patients. The
overexpressed UP genes were significantly enriched for GO
terms related to the response to infection and the innate im-
mune system. These gene transcripts were not functionally
unrelated to or independent of each other. Most UP genes
were affiliated with the module of the normative gene tran-
scriptional network specialized for innate immune response.
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Figure 4. Opposing and coordinated expression of innate and adaptive immune transcripts in patients with major depressive disorder (MDD). (A, B) Scatter
plots for the mean expression across the 75 underexpressed (DOWN) genes plotted against the mean expression of 90 overexpressed (UP) genes in the
Janssen–Brain Resource Company (Janssen–BRC) (A) and GlaxoSmithKline–High-Throughput Disease-specific target Identification Program (GSK–HiTDiP)
(B) datasets. Each point corresponds to a patient. Blue indicates case, and gray indicates control (CTL). Regression lines are shown in blue and gray,
respectively. In (A), an individual patient’s data point (red outline) is projected onto the regression line (red circle). The distance from the origin to the point on
the regression line is the bioscalar value for that patient. Inset illustrates the projection (black) of all individual patient data points (blue) onto the sample
regression line. (C, D) Left panels: Box plot of MDD-165 bioscalar values in controls and cases. Green line indicates the threshold identifying the top third
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Smaller clusters of highly correlated UP genes were typically
enriched in neutrophils, monocytes, and monocyte-derived
dendritic cells. These results are compatible with prior data
implicating activation of the innate immune system and
increased proinflammatory cytokine signaling in (some people
with) depression (8,20).

In contrast, we found that the underexpressed DOWN
genes were enriched for GO terms related to T-cell function
and adaptive immunity. The DOWN genes were affiliated with
modules of the transcriptome partially specialized for adaptive
immune function, and smaller clusters of strongly coexpressed
DOWN genes were enriched in T cells, B cells, and NK cells.
These results are compatible with prior data implicating relative
suppression of the cellular immune system in (some people
with) depression, including evidence for decreased NK cell
cytotoxicity and decreased proliferation of lymphocytes chal-
lenged with mitogens in vitro (44), and with recent data sug-
gesting that deficiencies of NK and T cells co-occur with
inflammatory monocyte activation as related phenomena in the
same patients with MDD (21,22,45,46).

In both studies, we also observed a strong statistical as-
sociation between mean UP gene overexpression and mean
DOWN gene underexpression in each patient. This provided
robust evidence that these complementary immunopheno-
types are indeed coupled at the level of an individual patient. It
also motivated the concept that each individual patient may be
located by a single number (bioscalar) on a spectrum of
coupled change in innate and adaptive immune system func-
tion. Patients with MDD had significantly higher scores on this
bioscalar, indicating a mean shift to relatively increased UP
gene expression and decreased DOWN gene expression. The
subgroup of most-inflamed patients with MDD, defined as the
top tertile of the MDD-165 bioscalar distribution, were identi-
fied with high sensitivity and specificity, suggesting that this
may in the future prove to be a useful biomarker for defining an
abnormally inflamed subgroup of patients with MDD.

So far, we have used the terms overexpression and
underexpression simply to describe higher and lower levels of
measured mRNA in cases compared with controls. At least
three (mutually nonexclusive) explanatory factors are plausible:
cellular, genetic, and environmental. First, case-control differ-
ences in expression could reflect differences in cell counts. For
example, increased monocyte counts have been reported in
MDD (47) and could cause apparent overexpression of innate
immune system genes measured in whole-blood samples (and
relative underexpression of adaptive immune genes). It will be
important in the future to combine cytometry and transcrip-
tional measurements in the same patients and to measure
case-control expression differences in sorted cell samples.
Second, mRNA changes could be quantitative traits deter-
mined by DNA variation at expression quantitative trait loci.
This genetic explanation would require that (at least some)
patients with MDD had a consistent profile of allelic variation in
inflammation-related genes (48), but large genome-wide as-
sociation studies have so far failed to identify genetic variants
robustly linked to risk for major depression (49). The absence
of significant genome-wide association study findings in MDD
could be regarded as problematic for an expression quantita-
tive trait locus interpretation of expression changes, or it could
be discounted on the grounds that classically designed
78 Biological Psychiatry January 1, 2018; 83:70–80 www.sobp.org/jou
association studies were underpowered to detect DNA varia-
tions occurring in only a subgroup of immunologically
dysfunctional patients. Third, gene expression changes could
have been induced in patients by exposure to some shared
environmental stimulus. The risk for depression is associated
with adverse events in the biological and social environments
such as infection, childhood abuse, and bereavement (50). In
addition, psychosocial stress has been linked to peripheral
immune state changes, such as increased proinflammatory
cytokines and monocyte activation (51), that are compatible
with overexpression of innate immune system genes.

It is a methodological limitation that the GSK–HiTDiP study,
designed primarily to identify risk genes for MDD, did not
provide data on severity of depressive symptoms or BMI. The
case-control comparisons are not controlled for potentially
confounding effects of cigarette smoking, race, comorbid
medical disease, or socioeconomic status on peripheral
immune status. Future studies of transcriptional biomarkers in
MDD, with more detailed clinical and immunological pheno-
typing and more complete control of potential confounds, will
be required to evaluate the generalizability of these results.

In short, we have reported replicable new evidence in sup-
port of peripheral immune gene expression markers for MDD. It
may be fruitful in the future to investigate coupled over-
expression of innate immune genes and underexpression of
adaptive immune genes as a predictor of antidepressant
response to novel immunotherapeutics.
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