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SUMMARY
Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biolog-
ical drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using
508 wild-typemouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly repro-
ducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molec-
ular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically ex-
pressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of
striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of day-
time transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher
the striatal transcriptomic signatures from Huntington’s disease models and heterozygous null mice for 52
genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar dis-
order-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.
INTRODUCTION

A fundamental process in biology is the flow of genetic informa-

tion from DNA to RNA and then to proteins to mediate physiolog-

ical functions. At the cellular level, the expression of functionally

related genes is often tightly co-regulated to enable temporal

control of molecular-complex formation and avoid conflicting

molecular processes (Geschwind and Konopka, 2009; Stuart

et al., 2003). One widely used systems biology approach to

examine tissue-level transcriptomic programs uses gene coex-

pression to identify gene modules with strongly correlated

expression patterns across an entire dataset (Zhang and Hor-

vath, 2005; Langfelder and Horvath, 2008; Parikshak et al.,

2015). Weighted gene correlation network analysis (WGCNA)
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permits the construction of robust gene coexpression modules

from transcriptomic datasets (Langfelder and Horvath, 2008).

In such networks, the expression values of genes in the entire

module can be summarized by its eigengene (i.e., first principal

component), and hub genes in each module can be ranked

based on their fuzzy module membership. The biological mean-

ing of each module can be inferred based on gene set enrich-

ment analysis or the known function of its hub genes (Langfelder

and Horvath, 2008).

Despite the extensive use of gene coexpression networks to

study the mammalian brain, some basic questions remain:

what are the types of coexpressed gene modules that could

be delineated in wild-type (WT) brain tissues? And what are

their underlying biological drivers? Transcriptomic studies of
. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Large-scale striatal gene coexpression networks in adult wild-type mice and its visualization with UMAP

(A) Hierarchical clustering tree (dendrogram) of genes based on the striatum co-expression network. Modules are indicated by colors and numeric labels below

the dendrogram.

(legend continued on next page)
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mammalian brains to date suggest gene-coexpression modules

mostly represent brain regions, and within each brain region,

modules correspond to different cell classes or cell types (Kelley

et al., 2018; McKenzie et al., 2018; Oldham et al., 2008). It is also

possible to detect modules enriched in genes specific to cellular

organelles such as ribosomes and mitochondria (Winden et al.,

2009). These findings suggest that gene coexpression analysis

can detect subtle variations in cellular composition due to natural

variations across individuals or tissue dissection (Oldham et al.,

2008). However, the full compendium of gene coexpression

modules in WT brain tissues is yet to be discerned.

Here, we identified striatal and cortical coexpression networks

using daytime transcriptomic data from adult mouse tissues. We

annotated coexpression modules based on their enrichment in

genes related to cell-type markers and molecular complexes

as well as diurnally expressed genes. Moreover, we applied

the annotated striatal gene coexpression networks to decipher

gene signatures related to Huntington’s disease (HD) and those

from 52 knockout mouse lines, leading to new biological insights

for multiple genes.

RESULTS

Overview of the study design
In this study, we asked what the biological drivers of gene coex-

pression network modules in adult mouse brain tissues are. We

took advantage of an ongoing large-scale transcriptomic study

of heterozygous knockout (KO-Het) andWT littermates for genes

selected from mutant Huntingtin (mHtt) CAG-length-dependent

coexpression networks (Langfelder et al., 2016; Figure S1;

Table S1). We used a total of 510WT striatal and 100WT cortical

RNA-sequencing (RNA-seq) samples in ourWGCNA analysis. To

interpret the resulting gene coexpression network, we employed

an additional 134 striatal and cortical diurnal time-dependent

RNA-seq samples for WT mice as well as 404 transcriptomic

samples from 52 KO-Het mice. Overall, this study employed

>1,100 novel mouse striatal and cortical tissue RNA-seq sam-

ples (Figure S1).

Mapping gene coexpression networks in the adult
mouse striatum
The striatum is a basal ganglia nucleus that is critical for

motor and cognitive function, and it is affected inmany neurolog-

ical and psychiatric disorders (Graybiel and Grafton, 2015; Kreit-

zer andMalenka, 2008). Here, we set out to thoroughlymap gene

coexpression modules that occur naturally in the daytime

striatal tissue transcriptomes (Figure 1A). Using 407 striatal

transcriptomic samples, we applied WGCNA to define 38 gene

coexpression modules ranging in size from 47 to 1,695 genes

and containing a total of 10,958 genes (Figures 1A and 1B;

Table S2). We next used 103 independent WT striatal RNA-seq

samples to show that all modules identified with the 407 samples

are strongly preserved in the 103 samples (Figure S2; Langfelder
(B) Correlation heatmap ofmodule eigengenes of the 38modules identified byWG

(C) UMAP representation of the co-expression network of individual genes with to

color used in (A) and (B). Positive module eigengene correlations >0.5 are indicate

and S2.
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et al., 2011). To quantify module preservation, we evaluated ei-

gengene-based intramodular connectivity (kME) in all modules

between the original discovery and replication datasets and

found high preservation (correlations > 0.7) for all but 2 modules

(Figure S2); the highest kME correlations were found in M16

(0.93) and M12 (0.92). Together, we concluded that the 38

WGCNA modules (referred to as striatal CoExMap hereafter)

are highly reproducible in the transcriptomes of adult mouse

striatal tissue.

We next asked how many transcriptomic samples are needed

to reliably detect these modules. We first selected random sub-

sets of the 407 samples ranging from n = 15 to 220 samples and

calculated module preservation (Figure S3). We found that 60

samples are sufficient for most modules (32/38) to reach kME

correlations of >0.6, and 110 samples allow the majority of mod-

ules (31/38) to reach kME correlation of >0.8. Second, we asked

howmany samples would be needed in a de novoWGCNA study

to identify modules that recapitulate one of the original 38 mod-

ules. We found that higher replication sample numbers resulted

in more replication modules significantly overlapping with or

containing at least 50% of the top hub genes for one of the 38

original modules (Figures S4A and S4B). With the top hub

gene-based criteria, we showed that WGCNA analysis with

about 60 samples can reach the level of module overlap as the

103-sample replication study.

We also performed separate WGCNA analyses of striatal male

and female transcriptomic samples and found that all identified

modules were highly concordant with each other, and modules

in this sex-specific analysis were highly preserved in the

transcriptomic datasets of the other sex (Figures S5A–S5C).

Thus, the striatal gene coexpression modules remained mostly

unchanged using either sex-specific or sex-adjusted analyses.

Visualization of the adult mouse striatal gene
coexpression network
We next asked whether we could develop visualization tools

based on a 2-dimensional (2D) embedding of genes in the

CoExMap modules with either uniform manifold approximation

and projection (UMAP) (McInnes et al., 2018) or t-distributed

stochastic neighbor embedding (t-SNE) (Van der Maaten and

Hinton, 2008). We used either the gene expression values in

each sample or the kME of each gene in thesemodules as inputs

(STAR Methods). All four data visualization schemes showed

positive correlations (between 0.3 and 0.7) between distance in

the visualization and correlations among genes and modules

(Figures S6A and S6B). The UMAPs showed slightly higher cor-

relation between map distance and intermodular or gene-gene

correlations than the t-SNE maps (Figure S6). We empirically

chose the UMAP with kME as inputs to be our interactive 2D

visualization tool and termed this tool the striatal CoExMap

UMAP (Figure 1C). The CoExMap UMAP shows four distinct

gene clusters we numbered 1–4 in decreasing order of the num-

ber of genes in the cluster (Figure 1C). Clusters 3 and 4 consist of
CNA. Heatmap color and numbers indicate correlations of module eigengenes.

p hub genes in each module indicated by larger circles colored by the module

d by blue lines connecting the hub genes. See also Figures S1–S7 and Table S1
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M16 and M12, respectively, and are well separated from clus-

ters 1 (25 modules) and 2 (7 modules). Overall, CoExMap

UMAP reflects the intramodular connectivity of the vast majority

of the modules (31 of the 38 modules), and the hub genes

(kME > 0.5) for each module are tightly clustered in specific

locations on the UMAP (Table S2 and Figure S7).

Interpretation of the striatal CoExMap—modules with
significant enrichment of cell class and cell-type
marker genes
We next annotated our 38 striatal modules using striatal cell-

type-specific marker genes (Figure 2A and Table S3; STAR

Methods) (Saunders et al., 2018; Gokce et al., 2016; Doyle

et al., 2008; Heiman et al., 2008) and other glial cell marker genes

(Hammondet al., 2019;Keren-Shaul et al., 2017). Sixmodulesare

enriched in markers of striatal medium spiny neurons (MSNs),

which account for about 95% of the striatal neurons. MSNs can

be divided into direct- and indirect-pathway MSNs (or D1-

MSNs and D2-MSNs, respectively) based on their differential

axonal projections and gene expression (Kreitzer and Malenka,

2008; Lobo et al., 2006; Heiman et al., 2008; Gokce et al., 2016;

Saunders et al., 2018). Overall, we found modules enriched in

marker genes for D2-MSN, D1-MSN, interneurons, oligodendro-

cytes, astrocytes, microglia, endothelial cells, ependymal cells,

and neural stem cells. Importantly, our study reveals multiple

modules containing marker genes from more than one cell type

(Figure 2A). For example, M4 is significantly enriched in markers

of parvalbumin interneurons and astrocytes (Figure S8B), M11 in

signatures of astrocytes and microglia, M12 in marker genes for

microglia and endothelial cells, and M16 in genes for ependymal

and neurogenic niche cells (Figure 2A). Together, our study re-

veals a set of modules that may represent coordinated marker

gene expression across different striatal cell types.

Striatal gene coexpression modules with enrichment in
distinct protein complexes
We hypothesized that some of the striatal coexpressionmodules

may be enriched in known protein complexes. Using stringent

criteria of p<1.0E�10andat least 30 interaction edges,we found

11modules that showedsignificant enrichment in knownprotein-

protein interactions and molecular pathways in the STRING

database (Szklarczyk et al., 2019) and identified their putative

upstream regulators using ingenuity pathway analysis (IPA)

(Figure S8C and Table S3). Interestingly, four modules are

enriched in terms related to mitochondria. M17 contains 33

ribosomal proteins as well as 12 mitochondrial inner membrane

proteins (gene ontology or GO), and its predicted upstream regu-

lator is rictor (mTOR pathway) (Figures 2B and S8C). Another

module, M16, is enriched in genes related to cilium and microtu-

bule-based movement (Figure S8C). M12 is enriched in innate

immunity and interferon signaling genes (Figure 2D), and its

predicted upstream regulators, interferon alpha, Stat1, and Irf7,
Figure 2. Enrichment of cell class and cell-type marker genes in the st

(A) Enrichment of CoExMap modules in selected cell-type marker sets. Heatmap

value). Numbers of overlapping genes are shown in those cells where the overla

(B–D) STRING database protein-protein interaction networks of genes in module

See also Figures S8 and Table S3.
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are also M12module genes (Figure S8C). M5 is particularly inter-

esting in the context of Parkinson’s disease (PD) (Figures 2C and

S8C). First, it is significantly enriched in familial PD genes

(i.e., Pink1, Park7/DJ-1, Atp13a2). Second, it is enriched in

genes in Pink1/Parkin-mediated mitophagy (e.g.,Mfn2, Sqstm1,

Tomm40) and othermitophagy/autophagy genes (e.g.,Samm50,

Fis1, Amfr, Fkbp8, Atp6v0b, Usp20, Atg101, Atg4d, Map1lc3a).

Third, it is highly enriched in GO terms mitochondrion, oxidative

phosphorylation, and ubiquitin-mediated proteolysis, which are

relevant to PD pathophysiology. The predicted IPA upstream

regulator of M5 is the mTOR pathway (i.e., Rictor and Stk11/

Lkb1) (Figure S8C). Thus, our unbiased striatal transcriptomic

mapping reveals a novel striatal coexpression module that con-

nects the Pink1-Parkin mitophagy pathway to mitochondrial

oxidative phosphorylation and ubiquitin-mediated proteolysis

and provides novel candidate genes to study these PD-relevant

pathways.

Striatal gene coexpression modules enriched in
diurnally expressed genes
Only 17 out of 38 striatal modules have robust enrichment in cell-

type markers or protein complex genes. We next sought to iden-

tify new biological drivers for the remaining unannotated striatal

coexpression modules. Two clues suggest that these modules

may be related to specific cellular states. First, M42 and

M55 modules have numerous immediate-early genes as hub

genes (e.g., Egr1, Nr4a3, Fosl2, and Egr4 in M42 and Junb,

Fos, Fosb, Arc in M55) and are enriched in neuronal- and synap-

tic-activity-regulated genes (Figure S9) (Kim et al., 2010; Zhang

et al., 2007). Moreover, M58 is significantly enriched in circadian

genes (Table S3) and contains several core circadian transcrip-

tion factors (i.e., Cry2, Dbp, Bhlhe40, Bhlhe41, and Nr1d1)

(Table S3; Takahashi, 2017).

To examine a possible relationship between the striatal

CoExMap modules and daily rhythmically transcribed genes,

we generated an RNA-seq dataset of adult mouse at 6 m of

age and defined between 971 and 3,272 daily rhythmically ex-

pressed genes that are significantly upregulated at each of the

8 ZT timepoints around the 24-h time window (FDR < 0.05;

Figures 3A and 3B; Table S4; STAR Methods). We validated

our analysis by confirming the expected circadian phases of

core clock-related genes (Figure S10A) (Takahashi, 2017) and

showed our striatal diurnally expressed genes are highly corre-

lated with those reported for the hypothalamus (Figure S10B)

(Zhang et al., 2014a). Finally, we compared our analysis of daily

rhythmic genes using linear models with the JTK_cyle method

(STARMethods) (Hughes et al., 2010) and found a highly positive

correlation for time of maximum significance (r = 0.98;

Figure S10C) and significance of association with diurnal time

(r = 0.86; Figure S10D).

Enrichment analyses showed that 18 striatal CoExMap mod-

ules are strongly (p < 10�8) enriched in experimentally defined
riatal coexpression modules

color represents enrichment significance (-log10 of the hypergeometric test p

p p value is < 10�8.

s M17 (B), M5 (C), and M12 (D) together with their main functional annotations.



Figure 3. Striatal gene coexpression modules are highly enriched in diurnally expressed genes

(A) Schematic diagram of the diurnal transcriptome variation study.

(B) Numbers of genes significantly (FDR < 0.05) upregulated around each of the 8 time points (STAR Methods).

(legend continued on next page)
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diurnal genes; of these, 11 and 7 modules are enriched in genes

upregulated during the nighttime and daytime, respectively (Fig-

ure 3C). Among the 18modules, six modules also have prior cell-

class/cell-type or molecular complex annotations (Figures 2 and

S8). These 18modules (referred to as ‘‘diurnal modules’’) contain

a total of 4,651 genes that diurnally vary at FDR < 0.05. Impor-

tantly, M14, the largest striatal CoExMap module with 1,695

genes, has strikingly high enrichment in genes that peak toward

the end of the night (965 genes at ZT21, FDR= 1.90E�310). Simi-

larly, M9 (300 genes at ZT9, FDR = 6.70E�112) and M39 (220

genes at ZT9, FDR = 1.70E�42) have robust enrichment in genes

that peak during the day. We next mapped the diurnal genes

onto the striatal CoExMap UMAP and found a striking dichoto-

mous distribution of genes that peak during the daytime versus

those that peak during the nighttime in opposite domains of

the UMAP (Figures 3D and S11).

Striatal CoExMap diurnal modules show distinct daily
temporal kinetics of gene expression levels and
biological enrichment
We next asked what the distinct daily temporal kinetics of the

CoExMap diurnal modules are and what biological functions

are suggested by their enrichment. We focused on 16 of the 18

strongly diurnally enriched CoExMap modules whose module

representative in the diurnal data are also strongly varying

(STAR Methods). We clustered these modules based on tempo-

ral patterns of their module representatives to define five distinct

diurnal kinetic patterns, which included two daytime patterns

(DP1 and DP2) with 1 and 6 modules each, and three nighttime

patterns (NP1–NP3) with 2–4 modules (Figure 4A). As expected,

the top hub genes of the diurnal modules exhibited the shared

diurnal expression patterns (Figure S12; Table S3).

We next examined the functional enrichment of the diurnal

modules in each day or night pattern (Figure 4B; Table S4).

DP1 contains only the M2 module that peaks at ZT3 and is

enriched in D2-MSN and common MSN genes (Figure 2), dopa-

mine-DARPP32 signaling, and synapses and synaptogenesis

(Figure 4B), revealing a coordinated upregulation of genes

involved in MSN-specific function and synaptogenesis at the

onset of daytime/sleep phase.

DP2 encompasses six modules with 2,357 genes and has a

broad peak during the daytime that plateaus around ZT9 (Fig-

ure 4A). The M7 is highly enriched in oligodendrocyte genes

and myelination and has TCF7L2 and SOX2 (known regulator

of oligodendrocyte differentiation) as its IPA upstream regulators

(Figure 4B). This result is consistent with evidence that oligoden-

drocyte genes are regulated by the circadian clock or sleep/

wake cycle (Artiushin and Sehgal, 2020; Bellesi et al., 2013).

Interestingly, M9 and M30 in DP2 are significantly enriched in

DNA repair genes (Figure 4B; Table S3). M9 is enriched in genes

involved in nuclear excision repair (Haf1a, Ercc3, Gtf2h5, Pola2,

Rpa2, Ube2i, Uvssa, and Xpc) and other DNA repair genes
(C) Overlaps of CoExMap modules (columns) with sets of genes upregulated a

hypergeometric test enrichment significance and numbers give the overlap sizes

are ordered in the order of modules in hierarchical clustering in Figure 1B.

(D) UMAP representation of the network with genes significantly upregulated at o

and Table S4.
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(Brca1, Brca2, Xrcc6) (Figure S12 and Tables S2 and S3). It

also has an enrichment in cell-cycle control of chromosomal

replication (Figure 4B), indicating that it may be related to cell

proliferation. M30 is significantly enriched in genes involved in

DNA double-strand break (DSB) repair, P53 signaling, and

BRCA1 in DNA damage response, including as its members

Atm, Atr, Prkdc, Rad50, Wrn, Msh3, Pms2, and Fancm

(Figure 4B; Tables S2 and S3). These results are consistent

with evidence showing elevated DNA damage in the mouse

brains with increased locomotor activities during the night (Sub-

erbielle et al., 2013) and association of DNA repair function with

sleep (Mourrain and Wang, 2019; Mure et al., 2018; Zada et al.,

2021). Another feature of DP2 modules is their enrichment in

genes involved in metabolism, such as spermine and spermidine

degradation I and Leucine degradation in M9; fatty acid oxida-

tion in M13; pyridoxal 50-phosphate salvage pathway and

AMP-activated protein kinase (AMPK) signaling for M30; and

superpathway of cholesterol biosynthesis and AMPK signaling

in M39 (Figure 4B; Table S3). Such findings are consistent with

the circadian control of metabolism in vivo (Panda, 2016; Rijo-

Ferreira and Takahashi, 2019). Finally, the top hub gene of the

M9 module, Cirbp (Figure S12), is a cold-induced RNA binding

protein that regulates expression of several clock genes as

well as rapid-eye-movement (REM) sleep (Liu et al., 2013).

We next examined the enrichment terms of NP modules (Fig-

ure 4B; Tables S4 and S5). NP1 contains two modules (M25 and

M54) that have a sharp peak at ZT12, a transition time from sleep

to wake for the mice. Interestingly, these two modules contain

genes that are regulated by the glucocorticoid hormone, as evi-

denced by the fact that their predicted upstream regulator is

dexamethasone (Figure 4C). Consistent with this interpretation,

the top hub gene of M25, Sgk1 (Figure S12), is a glucocorti-

coid-responsive gene that is upregulated by stress and at the

beginning of the rodent’s active period at night (Hinds et al.,

2017; Hor et al., 2019; Logan and McClung, 2019). Moreover,

M54 is enriched in endothelial cell marker genes and genes

involved in xenobiotic-metabolism signaling (Figures 2 and 4B).

NP2 contains three modules with a broad plateau between

ZT15 and ZT0 that include genes known to be upregulated by

neuronal activity and glutamate or GABA receptor agonists or an-

tagonists (Figures 4B and 4C; Table S3; Kim et al., 2010; Zhang

et al., 2007). M42 and M55 have predicted upstream regulators

CREM and CREB1 (IPA, Figure 4B), which are critical for regu-

lating activity- and circadian entrainment-dependent gene

expression (Lonze and Ginty, 2002). Interestingly, the top hub

gene of M55, Sik1, is essential for circadian clock entrainment

(Figure S12; Table S5) (Jagannath et al., 2013). Consistent with

the observations that genes upregulated by neuronal activities

are enriched in the modules that peaked during the night, we

also found that four DP2modules that peaked during the daytime

aresignificantlyenriched inKCl-downregulatedgenes (Figures4B

and 4C; Table S5; e.g., Kim et al., 2010; Zhang et al., 2007).
round each of the 8 time points (rows). In the heatmap, the color represents

for cells for which the enrichment p value is less than 10�8. Modules (columns)

ne of the 8 time points indicated by a non-gray color. See also Figures S9–S11
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Finally,NP3contains fourmodules thatpeakbetweenZT21and

ZT0. M14 is highly significantly enriched in protein-ubiquitination

pathways, unfolded protein response (endoplasmic reticulum

[ER] stress), dopamine-DARPP32 signaling, and protein process-

ing in the ER (Figure 4C; Table S3). The upstream regulators of

these pathways, e.g., Creb1, Crem, Hsf1, and Xbp1, are all M14

module genes. M14 module genes may have potential connec-

tions to sleep-related genes. First, M14 is significantly enriched

insleep-/wake-drivengenes (p=2.5310�22) (TableS5;Figure4D)

(Hor et al., 2019). Second, its #3 hub gene,Homer1a, is a synaptic

gene correlated with sleep loss (Figure S12) (Maret et al., 2007)

and plays a critical role in sleep-dependent synaptic scaling (Dier-

ing et al., 2017). Third, M14 also contains other genes central to

circadian clock regulation as well as sleep regulation (e.g., Per2,

Cry1, Abcc9, Csnk1a1 and Sik3) (Wang et al., 2018). Intriguingly,

the #2 hub gene of M14, Spred1, a suppressor of Ras signaling

(Wakioka et al., 2001), also appears to be a sleep-related gene

in sparrows (Jones et al., 2008). Together, our results suggest

an important role for M14 genes in nocturnal brain function and

possibly in sleep/wake cycle regulation.

Gene coexpression network in the cortex is primarily
driven by diurnal time
We next asked whether such diurnal time-driven gene coexpres-

sion is a general feature of transcriptomes from other brain re-

gions. As a proof of concept, we performed WGCNA analysis

of 100 cortical RNA-seq samples and identified 41 coexpression

modules (Figure S13; Table S6). Importantly, 32 cortical

modules showed significant overlap with the striatal modules

(Figure S14A). Additionally, 9 cortical modules were strongly en-

riched in cell class or cell-type marker genes, including 4 mod-

ules in neuronal genes, one in oligodendrocyte, one in microglia,

one inmixed astrocyte andmicroglia, and two in endothelial cells

(Figure S14B).

We next generated and analyzed a cortical diurnal transcrip-

tomic dataset to define genes that peaked at 8 different diurnal

timepoints (Figure S15A). We found 23 cortical modules that

are significantly enriched in cortical diurnally transcribed genes

(Table S6). We created cortical CoExMap UMAPs and found

that cortical diurnal genes that peaked at daytime or nighttime

were located in the opposite domains on the UMAP, similar to

our findings in the striatum (Figures 5A, S15B, and S15C). We

defined the cortical diurnal modules based on their temporal ki-

netics and defined two day patterns and three night patterns

(Figure 5B). By overlapping these modules with the diurnally

varying modules from the striatum, we found strong overlap of

modules that peaked in similar time windows during the day or

night (Figure 5B), confirming the conservation of diurnal gene

coexpression networks across two major brain regions.
Figure 4. Biological features of coexpression module-derived diurnal g

(A) Module representatives of CoExMap modules in diurnal expression data, org

resents the mean representative expression at the corresponding time.

(B) Enrichment of modules belonging to each DP and NP pattern in selected term

(C) Hypergeometric test enrichment significance of CoExMap modules (columns)

the day, green color represents enrichment in gene sets up during the night) and

(D) Hypergeometric test enrichment significance of CoExMap modules in genes

et al., 2019). See also Figures S12 and Table S5.
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Enrichment analysis of the cortical diurnal modules showed

similar enrichment terms to those in the striatum (Table S6).

For example, the cortical NP3 modules highly overlapped with

the striatal M14 (FDR= 1.20E�210) andwere enriched in the pro-

tein-ubiquitination pathway, AMPK signaling, and with upstream

regulators of Crem, Creb1, bicuculline, and levodopa (Table S6).

Moreover, the cortical DP1 and DP2 modules (5 in total) peaked

at ZT6–ZT12 and significantly overlapped with striatal DP1 (M2)

and DP2 modules (M9, M13, M39, and M40) (Figure 5B). These

daytime-upregulated modules are enriched in genes involved

in DNA repair, cyclins and cell-cycle regulation, insulin secre-

tion-signaling pathways, superpathways of cholesterol biosyn-

thesis, synaptogenesis signaling, and autophagy (Table S6).

Thus, the core biological features of diurnal gene modules are

also preserved across the two brain regions.

While we have thus far shown the similarities between the

striatal and cortical CoExMap modules in terms of gene overlap

and diurnal time-related genes, there are substantial tissue-spe-

cific features in gene coexpressionmodules across brain regions

(Figures S14A and S16). Thus, our striatal and cortical

CoExMaps are also valuable to study genes and modules that

have tissue-specific cellular, molecular, and diurnal functions.

Because we had both striatal and cortical RNA-seq samples

from 89 mice, we next explored whether the module eigengene

expression values of diurnally varying modules (e.g., striatal

M9, M13, or M14) in the two brain regions of the same mouse

would correlate across our entire dataset. Our analyses

confirmed that the eigengene expression levels for M9, M13,

and M14 were highly positively correlated between the cortical

and striatal datasets for the 89 mice (Figure 5C). These correla-

tions support the notion that the transcriptome of each

mouse, regardless of brain regions, carries shared ‘‘diurnal

time-stamped’’ gene signatures.

Application of striatal CoExMap to inform gene
signatures in Huntington’s disease
We have annotated the majority of the striatal CoExMap mod-

ules (36/38) based on their enrichment with cell class or cell-

type marker genes, molecular complexes, and diurnal time-

dependent genes (Figure S17A). Moreover, we have mapped

the modules with such annotations onto the striatal CoExMap

UMAP clusters 1–4, providing a readily memorizable and

visualizable association between the module annotations and

their geographic locations on the UMAP (Figure S17B). We

next tested the idea that the striatal CoExMap and its UMAP

could be useful to interpret gene signatures based on the

latter’s enrichment patterns in our annotated modules and

based on the locations of the gene signatures on the

CoExMap UMAP.
ene networks

anized by day and night patterns (DP and NP, respectively). Each point rep-

s. The x axis represents the hypergeometric test p-value.

in diurnally DE genes (blue color represents enrichment in gene sets up during

neuronal activity-related sets (rows).

whose expression was best fit by sleep-dependent and circadian models (Hor



Figure 5. Gene coexpression network in the cortex is primarily driven by diurnal time and synchronized with the striatum

(A) Overlaps of diurnally enriched cortex modules (columns) with genes upregulated at specific times. Color represents hypergeometric test significance and

numbers the overlap sizes.

(B) Overlaps of diurnally enriched cortex (columns) and striatum (rows) CoExMapmodules. Blue (red) color indicates overlaps of modules peaking at night (day) in

both regions; turquoise color indicates overlaps of modules that peak at night in one region and at day in the other.

(C) Scatterplots of module eigengenes of cortex and striatum modules M14, M13, and M9. Each point represents one of the 89 animals common to both the

striatum and cortex datasets. See also Figures S13–S16 and Table S6. Title of each plot indicates the correlation and the corresponding student p value (n=89).
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We first tested this concept using HD-related gene signatures.

HD is a dominantly inherited neurodegenerative disorder caused

by CAG repeat expansion in the Huntingtin (HTT) gene, and the

repeat length is inversely correlated with the age at disease
onset (Bates et al., 2015). A hallmark of HD neuropathology is

the selective degeneration of striatal MSNs (Bates et al., 2015).

Using an allelic series of murine Huntingtin (Htt) knockin mice,

we previously defined Htt CAG repeat length-dependent
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Figure 6. Application of CoExMap to inform genetic, transcriptomic, and pharmacological gene signatures in Huntington’s disease

(A) CoExMap UMAP with genes significantly (FDR < 0.05) down- and upregulated with CAG length marked in blue and red, respectively.

(B) CoExMap UMAP with genes significantly (FDR < 0.05) down- and upregulated by treatment with 0.32 mg/kg of a Pde10a inhibitor in Q175 homozygous mice

marked in blue and red, respectively.

(C) CoExMap UMAP with genes nearest to loci identified in Huntington’s disease GWAS at p < 10�5 (p < 10�8) marked in black (red).

(D) Detailed views of the blue and red rectangle areas in (C).

(legend continued on next page)
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dysregulated genes (Langfelder et al., 2016). We first examined

the enrichment of mHtt CAG repeat length-dependent genes in

our striatal CoExMap modules (Figure S18A). We found that

downregulated genes are enriched in modules with MSN

markers (M2, M45, M57), diurnal modules that peaked during

the daytime (M40) or nighttime (M43, M14), and two other mod-

ules (M19 and M41). On the CoExMap UMAP, the downregu-

lated genes appeared to be concentrated in the center of cluster

1, while upregulated genes were concentrated on the periphery

of clusters 1, 2, and 3 (Figure 6A). The latter may be related to the

upregulation of oligodendrocyte and astrocyte genes (Lang-

felder et al., 2016) as well as increased neurogenic genes in

HD models (Kandasamy and Aigner, 2018).

We next asked whether the striatal CoExMap and its UMAP

can be used to interpret gene signatures from pharmacological

interventions in the HD mouse models. As a proof of concept,

we mapped the striatal DE genes in the striatum of zQ175

knockin mice treated with three different doses of PDE10 inhib-

itor (PDEi), which partially rescues disease phenotypes in HD

mice (Beaumont et al., 2016). Interestingly, we found that two

doses of PDE10i (0.32 and 1 mg/kg), but not a third dose

(3.2 mg/kg), reproducibly increased gene expression in a subset

of modules downregulated by mHtt CAG expansion (Fig-

ure S18B, Table S7). Such partial rescue is readily visualizable

on the CoExMap UMAP, as the DE genes in the PDE10i-treated

HD mice only upregulated genes in the lower-left quadrant and

downregulated genes on the upper-right quadrant of UMAP

cluster 1, representing only a partial reversal of the dysregulated

genes in HD knockin mice (Figures 6A and 6B; Figure S18).

A third application of CoExMap UMAP in the context of HD is to

examine the map location for genes linked to genomic loci identi-

fied in genome-wide association studies (GWAS) for modifiers of

HD age of onset (Genetic Modifiers of Huntington’s Disease Con-

sortium, 2019). The prior studies revealed that HD GWAS loci

genes are significantly enriched inDNA repair genes, and a subset

of these genes (i.e., MSH3, MSH2, MLH1, FAN1) are known to

regulate somatic instability of mHTT CAG repeat length (Wheeler

and Dion, 2021; Goold et al., 2019; Manley et al., 1999). We found

that M30, a module upregulated during daytime and sleep in mice

(Figure 3C), is significantly enriched in murine homologs of HD

GWAS genes (FDR = 0.0116), including as its member genes

Msh3, Pms2, Rrm2b, and Ccdc82. We next mapped murine ho-

mologs of 75 HDGWASmodifier genes (p < 1E�5) (Genetic Mod-

ifiers of Huntington’s Disease Consortium, 2019) onto the striatal

CoExMap UMAP and found two regions of interest near the top

of UMAP cluster 1, corresponding toM9,M13, andM30 territories

(Figure 6C). Close examination of the first region showedproximity

on the map for Fan1,Mlh1, Tacc3, Pms2, and Polq, and a second

region showed proximity on the map for Msh3, Rrm2b, Tcerg1,

Ccdc82, Erbin, and Atp11b (Figures 6C and 6D). Since the

UMAPdistance shows positive associationwith gene-gene corre-

lation in our CoExMap modules (Figures 1C and S6), we next

directly examined the correlation of these HD GWAS-related
(E) Heatmap representation of the correlation network of the largest cluster of H

(A) using average linkage hierarchical clustering of correlation-based dissimilarit

responding to correlation 0.07). We retained the largest cluster for the plot shown

0.3 are shown explicitly. See also Figures S17 and S18 and Table S7.
genes in our striatal transcriptomic dataset (Figure 6E). We

confirmed significant positive correlation in gene expression in

three groups of genes: Pms2, Tacc3, and Tnip2 in the first group;

Mlh1, Fan1, and Osgepl1 in the second group; and Msh3,

Rrm2b, and Tcerg1 in the third group. Thus, our study demon-

strates that a subset of HD GWAS-related DNA repair genes are

significantlyenriched inM30,amoduleupregulated in thedaytime.

Furthermore, our study reveals several HD GWAS genes (e.g.,

Ccdc82, Tcerg1, Rrm2b, Tacc3), with previously unclear roles in

HD modification, to have significantly correlated expression with

known DNA repair/HD GWAS genes, providing the impetus to

investigate their potential roles in DNA handling in the context

of HD.

Application of striatal CoExMap to interpret differential
gene expression signatures from 52 heterozygous
knockout mice
We next asked whether the striatal CoExMap could help interpret

in vivo genetic perturbation gene signatures based on the anno-

tated biology in the striatal CoExMap modules (Figures 1, 2, 3, 4,

and S17). We tested this idea using transcriptomic datasets from

striatal tissues dissected in the afternoons from KO-Het mice for

52 genes and their respectiveWTcontrols at 6mof age (Figure 7A

and Table S1; STARMethods). Importantly, our study included 13

novel KO mouse lines (Arpp19, Arpp21, Ddit4l, Ece2, Gpx6, Hrk,

Kdm3b, Morf4l1, Pcdh20, Ppp1ca, Tcf20, Trank1, Zswim6)

created for this study (Table S1).Wemapped the striatal DEgenes

from the 52KO-Het transcriptomic study onto theCoExMapmod-

ules, using lessstringentDEcriterionofp<0.01 to increase thesta-

tistical power to identify modules with significant DE gene overlap

(Figure 7B). DE genes for 33 KO-Het mice had at least one signif-

icant enrichment (p < 1E�5) among the CoExMap modules (Fig-

ure 7B). Importantly, the majority of the KO-Het crosses (38 out

of 52) hadDEgeneswith a highly significant (p < 1E�7; chi-square

test), non-random distribution of their DE genes among the

CoExMap modules, with seven KO mouse lines having p values

less than 1E�80 (Figure 7C and Table S8). This analysis suggests

that the DE gene signatures from these KO-Het mice selectively

affect certain striatal CoExMap modules.

We next assessed whether the distribution of KO-Het DE

genes in the CoExMapmodules could infer the biological impact

of each genetic perturbation, using our annotated modules as a

reference (Figures 7B and S17). Moreover, we hypothesized that

such a CoExMapmodule-based DE genemapping could help to

cluster perturbations with similar gene signatures, hence con-

necting perturbations that may have similar molecular impacts

in the striatum in vivo. The analysis resulted in several clusters

of perturbations based on DE gene/module overlaps (Figure 8A

and Table S9). The first group consisted of KO-Het of Fbxl16,

Bcl11b, Foxp1, and Pde10a, all known MSN marker genes (Hei-

man et al., 2008), and they appeared to downregulate genes in

modules enriched in MSN markers (e.g., M2, M45, and M57)

(Figures 2 and 7B). The second cluster of KO-Het mice
D GWAS genes. Specifically, we clustered the genes marked black or red in

y and determined clusters using constant-height tree cut at height 0.93 (cor-

here. Heatmap represents correlation; correlations with absolute values above
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(Kdm4b, Prkcq, Kdm3a, Kifap3, and Kcnh4) downregulated

genes in M7, which is an oligodendrocyte gene-enrichedmodule

(Figures 2 and 7B). Additionally, two large KO-Het clusters either

upregulated (Syndig1l, Nagk, Abi3 bp, Pcdh20, Gpx6) or down-

regulated (Fbxl16, Foxp1, Inf2, Ezh2, Atf6, Trank1, Ece2) genes

in M14, the largest diurnal module (Figures 3C and 7B). Further-

more, Vrk1 KO-Het selectively downregulated M4 module

genes, which are enriched in interneuron and astrocyte marker

genes, while those fromHrk and Ptpn7KO-Het mice significantly

downregulated genes in M16, a module enriched in ependymal

cell and neurogenesis genes (Figures 2 and 7B). Finally, we

directly verified that the majority of KO-Het mice with DE genes

mapped to modules annotated with a certain aspect of biology,

e.g., cell types or diurnal time, do indeed dysregulate cell marker

or diurnal time-dependent genes (Figures 8A and 8B).

Functional validation of Kdm4b and Prkcq in regulating
oligodendrocyte differentiation in vitro

We next tested whether interpretation of KO-Het DE gene signa-

tures based on CoExMap could help reveal their functional roles

in brain cell type or diurnal biology. We first evaluated Kdm4b

and Prkcq for their roles in oligodendrocyte differentiation

in vitro (see STAR Methods) because their KO-Het DE genes

are mapped to M7 and are enriched in oligodendrocyte genes.

Prkcq is known to be selectively expressed in oligodendrocytes

(Zhang et al., 2014b), and Kdm4b is a ubiquitously expressed

gene encoding a histone H3K9 demethylase. We found that

small interfering RNA (siRNA)-mediated knockdown of Prkcq

or Kdm4b, but not scrambled siRNA controls, significantly

reduced the differentiation of oligodendrocyte precursor

cells (OPCs) into mature oligodendrocytes based on cellular

morphology and expression of mature oligodendrocyte marker

genes (He et al., 2017; Figures 8C–8E). This study confirms

that two KO-Het genes with perturbation signatures that map-

ped to the striatal CoExMap M7 module indeed have functional

roles in regulating oligodendrocyte differentiation.

A novel role for bipolar disorder GWAS gene Trank1 in
regulating anxiety-like and nocturnal locomotor
behaviors
Our novel KO-het forTrank1 significantly affects genes in theM14

module, the largest striatal CoExMap module that peaks during

thenight. HumanTRANK1 is located at oneof themost replicated

GWAS loci for bipolar disorder (BP) (Ikeda et al., 2018; Li et al.,

2020;Muhleisen et al., 2014; Stahl et al., 2019). However, the bio-
Figure 7. CoExMap-based interpretation of gene signatures from 52 h
(A) Schematic diagram of perturbation study. WT controls and KO-Het mice for 5

identified and mapped onto CoExMap modules.

(B) Enrichment of modules in genes DE at p < 0.01 in KO-Het mice versusWT back

(right heatmap). Each row corresponds to a striatum CoExMapmodule labeled by

to a heterozygous KO of the indicated gene, a cell type, or to diurnally variable g

gene is assigned to. In the left heatmap, color indicates ‘‘signed’’ enrichment sig

positive for down- and upregulated genes, respectively). For each cell, we selecte

modules and KO genes are shown that have at least one p value < 10�5. Module

based on correlation of the signed significance. In the right heatmap, color repr

number of marker sets for each cell type.

(C) Chi-square test of random distribution of DE genes for KO-Het perturbations v

the test significance as a function of the total number of genes DE at p < 0.01. S
logical function ofTrank1 in thebrain and its pathogenic role inBP

remain unknown. Based on the enrichment of Trank1 KO-Het DE

gene signature in M14, we hypothesized that Trank1 KO-Het and

homozygous Trank1 KO may affect nighttime behaviors and

those associated with BP (e. g., anxiety). The Trank1 KO mice

showed normal performance in motor performance (rotarod

test) (Figure S19A) (Gray et al., 2008) and depression-like behav-

iors (forced swimming test) (Figure S19B) Wang et al., 2014).

Interestingly, in the light-dark box test (anxiety-like behaviors),

the Trank1 homozygous knockout (KO-Homo) showed a signifi-

cant deficit in the time spent in the dark chamber, an indication

of reduction in anxiety-like behaviors (Figure S19C). Importantly,

in monitoring locomotor activity for 10 days (Whittaker et al.,

2018), we found that Trank1 KO-Homo showed significant hypo-

locomotion at nighttime (Figures 8F and 8GandS19D). Together,

our study revealed an essential function of Trank1 in regulating

daily rhythmic locomotor behaviors and anxiety-like behavior

and also provided new insights into a potential pathobiological

role for Trank1 in BP.

Online CoExMap UMAP as an annotated searchable
resource for connecting gene signatures to gene
coexpression neighborhoods, networks, and annotated
biology
To facilitate the access and exploration of our striatal CoExMap

UMAP, we created a user-friendly web tool (through https://

www.hdinhd.org/) that allows Google Map-like zoomable

searches for genes or gene sets and displays of their distribution

on the map, enabling the interpretation of any gene or gene set

based on the annotated biology of distinct map locations (i.e.,

modules) and known function of neighboring genes that are likely

to be coexpressed. This online resource also contains an interac-

tive table that allows various rankings of the striatal DE gene sig-

natures for the 52 KO-Het perturbations based on their striatal

CoExMap module enrichment. We envision that the CoExMap

and its interactive online UMAP could be broadly useful to inter-

pret brain gene signatures from perturbations or diseases and to

connect themtoannotatedmolecular, cellular, anddiurnal biology

defined by their significantly overlapped CoExMap modules.

DISCUSSION

Our study concurs with prior findings that certain brain gene co-

expression modules are enriched in markers of cell class or cell

types (Oldham et al., 2008; Hawrylycz et al., 2012; Kelley et al.,
eterozygous knockout mice
2 genes were aged to 6 months and striata were sequenced. DE genes were

ground (left heatmap) and in cell-type marker sets and diurnally variable genes

numeric label, number of genes, and module color. Each column corresponds

enes. Color next to the gene symbol shows the striatum CoExMap module the

nificance (-log10 of the hypergeometric test enrichment p value, negative and

d the direction (color) with the more significant enrichment p value. Only those

s and perturbations are clustered using average linkage hierarchical clustering

esents -log10 of the hypergeometric test enrichment p value corrected for the

ersus WT controls among striatum CoExMap modules. The scatterplot shows

ee also Table S8.
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2018). A novel finding here is that 12 out of 13 striatal modules

are enriched in markers of more than one cell type. There are

several possible explanations here. First, the cell types may be

anatomically located in proximity and have fixed relative cell pro-

portions (e.g., M16 module with neurogenic niche cells and

ependymal cells). Second, the genes coexpressed in two

different cell types may be co-regulated by the same upstream

signals or represent a form of cell-cell communication. Onemod-

ule that may fit this mechanism is M4, which is highly enriched in

both interneuron and astrocyte markers, which could be a result

of interneuron-astrocyte signaling (Mederos et al., 2018; Shige-

tomi et al., 2011) or shared response to extracellular ATP

signaling (Bowser and Khakh, 2004). Similarly, M11 contains

both astrocyte and microglia marker genes and is preserved in

the cortical network, and it may reflect crosstalk between these

two cell types (Vainchtein and Molofsky, 2020). An intriguing

finding is the mixed cell-type modules containing both the

D1-MSN and D2-MSN marker genes (e.g., M2 and M45)

(Figures 1B and 2A), which may be a result of M2, but not

M45, being a diurnal module. Together, our study reveals that

bulk tissue gene coexpressionmappingmay reveal co-regulated

genes across cell types and provide molecular and cellular can-

didates to study cell-cell communications in the brain.

Our study demonstrates that certain molecular complexes

are highly coexpressed in the mammalian brain. There are

two possible sources for such molecular complex enrichment

in coexpression modules. First, some of the protein complexes

are selectively enriched in certain cell types that have special-

ized molecular complexes (e.g., synapse and potassium chan-

nel genes in M4 [interneurons], fatty acid metabolism and lyso-

some in M11 [astrocytes/microglia], innate immunity and

interferon signaling in M12 [microglia], and cilia and microtu-

bule proteins in M16 [ependymal cells]) (Figure S8C). However,

there are several modules containing ubiquitously expressed

molecular complexes, suggesting they are tightly coexpressed

but at different levels across striatal samples. Examples of

such modules are M17 (ribosome/mitochondria oxidative

phosphorylation genes) and M5 (PD/mitophagy/autophagy/

mitochondria genes). The molecular complexes in M5 are

involved in two core functions that are highly relevant to PD

(Pickrell and Youle, 2015), providing the impetus to study the
Figure 8. Application of CoExMap to identify perturbations that disrup

(A) Enrichment of cell-type marker sets in genes DE at p < 0.01 in heterozygous KO

and each column to one dataset with heterozygous KO of the indicated gene. In

hypergeometric test p value, negative and positive in down- and upregulated ge

significant enrichment p value. Only those sets and KO genes are shown that ha

(B) Enrichment of diurnally DE gene sets in genes DE at p < 0.01 in heterozygou

upregulated (FDR < 0.05) around the indicated time. In the heatmap, color indica

(C) Immunofluorescence labeling for Mbp and DAPI in transfected rat oligoden

bar, 30 mm.

(D and E) qRT-PCR analyses of Kdm4b,Mbp, Plp,Myrf,Mag, andMog in siKdm4

SEM.; n = 3 independent experiments; two-tailed unpaired Student’s t test.

(F) Examples of cage activity rhythms recorded from WT, Trank1 KO-Het, and KO

scale (85%of themaximum of themost active individual). Each row represents tw

row. Gray shading in the actograms indicates lights off.

(G) Rhythms in cage activity in WT, Trank1 KO-Het, and KO-Homo mice. Running

Zeitgeber time. 24-h profiles of locomotor activity were analyzed using a two-way

comparisons test, *p < 0.05. Data points are the mean ± SEM (WT: n = 10 anima
M5 module hub genes for their roles in PD pathogenesis and

therapeutics.

An important contribution of this study is the use of hundreds

of daytime transcriptomic samples to define a full complement

of diurnal gene coexpression modules for both the striatum and

cortex in adult mice. An interesting question is how transcrip-

tomes obtained from mice dissected during a restricted day-

time window (1–5 pm) capture the full repertoire of 24-h diurnal

gene networks embedded in the tissue. Our study showed a

strong positive correlation of eigengenes of three diurnally var-

iable modules between the striatal and cortical tissues, sug-

gesting that the diurnal modules capture an expression ‘‘time

stamp’’ that may vary with different kinetics for different diurnal

modules within the narrow daytime dissection window. Addi-

tionally, our study provides a strong rationale for transcriptomic

studies to be performed using tissues dissected from narrow

time windows in the diurnal cycle in order to avoid the con-

founding effects of diurnally expressed genes. Together, our

study provides the first experimental evidence to confirm the

theory that diurnal time is a major driver of gene coexpression

in mammalian tissues.

Our study provides a novel molecular framework to study the

diurnal time-dependent gene expression and function in the

mammalian brain. We first defined stable striatal and cortical

coexpression modules and then used our experimental diurnal

transcriptomic dataset to identify modules that peak or trough

during the diurnal period. Using such an approach, our analysis

is not limited by a pre-defined circadian or ultradian rhythmicity.

Moreover, our approach can divide a large number of genes

with similar daily periodicity into 2–6 coexpression modules en-

riched in biologically distinct terms. Perhaps the most impor-

tant contribution of our work to the study of brain diurnal

biology is the list of genes in each striatal and cortical diurnal

module, ranked by their module hub gene status, and the bio-

logical pathways enriched for these modules. Together, they

constitute unbiased entry points to study novel genes and

gene networks related to diurnal time in the mammalian brain,

an approach that can be readily expanded to study other

mammalian tissues.

Some of the novel insights, based on the striatal and

cortical diurnal modules, can be followed up to study the
t cell-type signatures and diurnal rhythms

mice versus WT background. Each row corresponds to a cell-type marker set

the heatmap, color indicates ‘‘signed’’ enrichment significance (-log10 of the

nes, respectively). For each cell, we selected the direction (sign) with the more

ve at least one p value <10�8.

s KO mice versus WT background. Each row corresponds to a set of genes

tes ‘‘signed’’ enrichment significance.

drocytes with control siRNA versus siRNA targeting Kdm4b or Prkcq. Scale

b (D) or siPrkcq-treated (E) rat oligodendrocytes. Data are presented as mean ±

-Homo mice. The activity levels in the actograms were normalized to the same

o consecutive days, and the second day is repeated at the beginning of the next

averages (1 hr bin) of locomotor activity in different genotypes are plotted. ZT,

ANOVA with genotype and time as factors, followed by Holm-Sidak’s multiple

ls; Het: n = 11; KO: n = 8). See also Figures S19 and Table S9.
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role of individual genes or gene modules in the brain’s sepa-

ration of function based on time of day. For example, more

studies should address why and how certain MSN identity

genes in M2 peak at ZT3, which challenges the prior concept

that neuronal identity genes are stably transcribed (Fishell and

Heintz, 2013). The modules with a broad peak of daytime

expression (DP2) provide independent support for emerging

evidence suggesting elevated oligodendrocyte function (M7)

(Artiushin and Sehgal, 2020; de Vivo and Bellesi, 2019), DNA

repair (Mourrain and Wang, 2019; Mure et al., 2018; Bellesi

et al., 2016), and metabolism (Panda, 2016) during the sleep

and rest at daytime. However, unlike these prior studies that

are often based on a small subset of genes, our striatal and

cortical CoExMaps provide a rich list of diurnal module hub

genes to pursue an in-depth, systematic study of genes and

pathways essential to chronobiology in the mouse brain.

Another key finding is that genes up- and downregulated by

KCl and synaptic activity in cultured neurons were enriched in

night- and day-peaked diurnal modules, respectively. This

finding is consistent with evidence that neuronal firing rate and

synaptic homeostasis is promoted by wake and suppressed

by sleep (Hengen et al., 2016; Torrado Pancheco et al., 2021; Cir-

elli, 2017; Diering et al., 2017). Thus, hub genes for these diurnal

modules enriched with neuronal activity regulated genes (Fig-

ure 4C) are unbiased candidates to study synaptic homeostasis

and neuronal plasticity throughout the daily cycle.

Finally, M14 has the most diurnally expressed genes and a

strong link to brain function related to the awake and active

phase. This module is enriched in multiple molecular pathways

similar to those found active in nighttime in prior studies (Mure

et al., 2018; Zhang et al., 2014a; Noya et al., 2019). Importantly,

this module is significantly enriched in genes upregulated during

sleep deprivation (with Homer1 as one of the top hub genes) and

has multiple sleep disorder-associated genes as members.

Thus, M14 hub genes should be further investigated for their po-

tential roles in brain function during the awake and active phase

and possible relevance to sleep biology.

The connectivity map (CMAP) demonstrated that gene

expression signatures from genetic or chemical perturbations

of cultured cells can be used to identify previously unrecognized

connections among these perturbagens based on high similarity

of gene signatures (Lamb et al., 2006; Subramanian et al., 2017).

Our study used extensive examples, from genetic as well as

pharmacological gene signatures from HD mouse models to

perturbation gene signatures from 52 heterozygous KO mice,

to demonstrate the utility of CoExMap in interpreting perturba-

tion gene signatures or other gene sets based on their enrich-

ment in annotated CoExMap modules. Moreover, we developed

an online searchable and zoomable striatal gene coexpression

map (i.e., striatal CoExMap UMAP), described the fidelity of

the map in preserving both local and global connectivity of the

gene networks, and demonstrated its utility to interpret gene

sets based on annotated biology associated with map location

and local gene neighbors. Thus, analogous to the CMAP, mostly

used for cellular perturbation signatures, CoExMap can readily

interpret gene signatures from intact brain tissues based on their

enrichment in different annotated modules to generate interpret-

able new knowledge and testable hypotheses.
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Our study includes a rigorous demonstration of the utility of

striatal CoExMap to help interpret in vivo genetic perturbation

gene signatures (i.e., striatal DE genes) from 52 heterozygous

KO mice. Crucially, this study demonstrated a highly non-

random distribution of DE genes from the 52 KO-Het mice in

the 38 CoExMap modules, suggesting that each genetic pertur-

bation affects specific biological networks. Additionally, since

the KO-Het gene signatures in bulk striatal tissue could be sub-

tle, our CoExMap-based approach demonstrates a high sensi-

tivity to detect biologically meaningful module enrichment,

which is advantageous compared to conventional gene set

enrichment analysis that uses gene sets generated mostly

outside of the tissue or cell types of interest (e.g., cultured can-

cer cell lines).

An important application of CoExMap is to identify perturba-

tions that disrupt diurnal gene expression and do so using tran-

scriptomes derived from a narrow daytime window. To illustrate

this point, we identified two major clusters of KO-Het gene sig-

natures that either upregulated (5 genes) or downregulated (6

genes) the largest diurnal module, M14. We hypothesized,

and our analysis confirmed, that these KO-Het gene signatures

significantly overlapped with experimentally verified, diurnally

expressed genes (Figure 8B). We provided evidence that one

such KO gene, Trank1, was important for locomotor activity

during nighttime and exhibits anxiety-reduction behaviors,

providing novel insights into its potential role in bipolar disor-

ders. Importantly, in all our perturbation RNA-seq studies,

we carried out tissue dissection in a restricted time window

during the daytime rather than periodically over a 24-h period,

demonstrating that CoExMap is a simple and scalable tool

that can use daytime transcriptomic data to connect genetic,

pharmacological, and disease gene signatures to annotated

diurnal molecular networks, even ones that peak in the

nighttime.
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Experimental models: Organisms/strains

Mouse: Kcnh4 KO EMMA RRID:IMSR_EM:08235

Mouse: Kdm4b KO EMMA RRID:IMSR_EM:05854

Mouse: Kifap3 KO EMMA RRID:IMSR_EM:11555

Mouse: Nagk KO EMMA RRID:IMSR_EM:05309

Mouse: P4ha1 KO EMMA RRID:IMSR_EM:08331

Mouse: Pxdn KO EMMA RRID:IMSR_EM:01274

Mouse: Sh2d5 KO EMMA RRID:IMSR_EM:07282

Mouse: Asl KO JAX RRID:IMSR_JAX:018830

Mouse: Atf6 KO JAX RRID:IMSR_JAX:028253

Mouse: Bcr KO JAX RRID:IMSR_JAX:026396
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Mouse: Fbxl16 KO MMRRC RRID:MMRRC_047668-UCD
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Mouse: Kdm3a KO MMRRC RRID:MMRRC_036474-UNC

Mouse: Pde1b KO MMRRC RRID:MMRRC_011635-UNC
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Mouse: Rgs9 KO MMRRC RRID:MMRRC_031829-UNC

Mouse: Syndig1l KO MMRRC RRID:MMRRC_049952-UCD

Mouse: Tbc1d8 KO MMRRC RRID:MMRRC_042140-JAX

Mouse: Vrk1 KO MMRRC RRID:MMRRC_050329-UCD

Mouse: Dach1 KO RIKEN RRID:IMSR_RBRC06804

Mouse: Ptpn7 KO RIKEN RRID:IMSR_RBRC00757

Mouse: Arpp19 KO This paper N/A

Mouse: Arpp21 KO This paper N/A

Mouse: Ddit4l KO This paper N/A

Mouse: Ece2 KO This paper N/A
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Mouse: Hrk KO This paper N/A

Mouse: Kdm3b KO This paper N/A

Mouse: Morf4l1 KO This paper N/A

Mouse: Pcdh20 KO This paper N/A

Mouse: Ppp1ca KO This paper N/A

Mouse: Tcf20 KO This paper N/A

Mouse: Trank1 KO This paper N/A

Mouse: Zswim6 KO This paper N/A
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siRNA for mouse Kdm4b Sigma Aldrich Cat# NM_172132

siRNA for mouse Prkcq Sigma Aldrich Cat# NM_008859

ProLong Gold Antifade Mountant with DAPI Invitrogen Cat# P36935
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RNAeasy Plus Micro Kit QIAGEN Cat# 74034

TruSeq Stranded mRNA LT Prep Kit Illumina Cat# RS-122-2101

Lipofectamine RNAiMAX Life Technologies Cat# 1377850

Deposited data

Raw data files for CoExMap RNA-seq This paper GSE149900

Raw data files for circadian RNA-seq This paper GSE151565

Software and algorithms

WGCNA: an R package for weighted

correlation network analysis

UCLA https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/

WGCNA/; RRID:SCR_003302

ImageJ NIH https://imagej.nih.gov/ij/index.html;

RRID:SCR_003070

STAR N/A https://github.com/alexdobin/STAR;

RRID:SCR_015899

HTSeq N/A https://htseq.readthedocs.io/en/release_0.

10.0/; RRID:SCR_005514

GraphPad Prism 7 GraphPad Software https://www.graphpad.com;

RRID:SCR_002798

Adobe Photoshop CC19 Adobe https://www.adobe.com;

RRID:SCR_014199

Additional resources

Online CoExMap database UCLA & CHDI https://www.hdinhd.org/
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Materials availability
Mouse lines generated in this study are in the process to be deposited to MMRRC for distribution to the scientific community. Before

the lines become available to public, limited stock will be available upon request following a completed material transfer agreement.

Data and code availability
CoEx RNAseq data has been deposited within the Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/geo), acces-

sion number GSE149900. The circadian mRNA sequencing data is also available as GSE151565. We also created an online search-

able CoExMap (through https://www.hdinhd.org/). Most codes are listed under ‘‘Software and Algorithms’’ in the ‘‘Key Resource Ta-

ble’’, other algorithms are under ‘‘Quantification and statistical analysis’’ section of STARMethod. Any additional information required

to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental animals for the striatal and cortical CoExMap and KO-het perturbation studies
The mice use for the striatal and cortical CoExMap and KO-het perturbation studies were at 6-month age and sex balanced (832

males and 832 females). There is no influence or association of sex on our findings (see Figure S5). 39 KOmouse lines were imported

from public repositories (i.e., JAX, EMMA, MMRRC and RIKEN). Thirteen KO mouse lines (Arpp19, Arpp21, Ddit4l, Ece2, Gpx6, Hrk,

Kdm3b,Morf4l1,Pcdh20,Ppp1ca, Tcf20, Trank1,Zswim6) were generated by Yang Lab using the CRISPR/Cas9method at the Jack-

son Laboratory’s CustomerModel Generation Core (9 lines) and at Mouse Biology Program at University of California, Davies (4 lines;

Table S1). 6 lines are conditional knockout mice (Asl,Atf6,Chn1, Ezh2,Rest, Scn4b). Malemice in these 6 lines were first bred to E2a-

Cre female (JAX 003724), heterozygous offspring carrying post-Cre (null) allele were used for further crossing. We bred heterozygous

KO mice for 52 genes (Table S1) to Q140 KI mice to generate offspring with 4 different genotypes. For each crossing, pups were

weaned and ear tagged at around 3 weeks of age, and genomic DNAs extracted from ear biopsies were used for genotyping

PCR. All mice were maintained and bred under standard conditions consistent with National Institutes of Health guidelines and

approved by the University of California, Los Angeles Institutional Animal Care and Use Committees. The cages were maintained

on a 12:12 light/dark cycle, with food and water ad lib.

Experimental animals for the diurnal transcriptomic study
Seventy-two male C57Bl/6J mice (JAX:000664) at 26 weeks age were used for the diurnal transcriptomic study. We selected to use

male mice to avoid hormonal effects on diurnal activity in female mice. The mouse housing and tissue collection for diurnal transcrip-

tomic study were performed at Cambridge University, United Kingdom under animal protocols approved by the Institutional Animal

Care and Use Committees. The cages were maintained on a 12:12 light/dark cycle, with food and water ad lib.

METHOD DETAILS

Collecting striatal and cortical tissues for RNA-sequencing for the striatal and cortical CoExMap and KO-het
perturbation studies
Four female and four male mice from wildtype and heterozygous KO (KO-Het) mice between 26 and 27 weeks of age were used for

transcriptomic study, thus a total of 8 WT and 8 KO-Het were profiled from each cross. Striatal tissues were harvested from mice

strictly in the afternoon time window between ZT7 and ZT11 and fresh frozen on dry ice. We also dissected cortex from 100 mice

(89 of which also have striatum expression data) and performed RNA-seq study. Total RNAwas extracted using RNeasy kit (Qiagen).

All RNA samples had RIN>8.0, with average RINz8.4. Library preparation and RNA sequencing were performed by the UCLANeuro-

science Genomics Core (UNGC). Libraries were prepared using the Illumina TruSeq RNA Library Prep Kit v2 and sequenced on an

Illumina HiSeq4000 sequencer using strand-specific, paired-end, 69-mer sequencing protocol to aminimum read depth of 30million

reads per sample. Reads were aligned to mouse genome mm10 using the STAR aligner with default settings. Read counts for indi-

vidual genes were obtained using HTSeq. RNAseq data has been deposited within the Gene Expression Omnibus (GEO) repository

(www.ncbi.nlm.nih.gov/geo), accession number GSE149900.

Diurnal transcriptomic study
Male C57Bl/6J mice were purchased from the Jackson Lab (JAX:000,664). Mice aged 22 weeks were singly housed within circadian

cabinets under 12:12LD cycle with different light cycle settings on each of 4 cabinets. This was to reduce disturbance to mice in the

cabinets and to allow mice to be harvested from different parts of the light cycle at the same time. At 26 weeks the mice were sacri-

ficed, and tissue collected for RNA sequencing. At least 6 mice were harvested at 3 hourly intervals across a 36-h window. At each

tissue collection point, 2 mice were chosen pseudorandomly from different cabinets. Before the cabinet was opened and mice were

removed, the actograms were checked so their rest-activity rhythms of all mice were consistent with the light period: only mice that

were active in the dark period and non-active (that had been resting for >15 min) in the light period were used. Dissection was rapid

(less than 10min). Tissue specimens were removed, flash frozen on dry ice, and frozen samples were shipped to Expression Analysis,

Inc. (Durham, NC) for RNA-seq study. Briefly, total RNAwas harvested using theQiagenmiRNeasy kit. RNA quality and integrity were
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monitored via Agilent Bioanalyzer. Aminimal RIN score of greater than 7.0was used as a criterion for subsequent RNA-seq study (156

samples met the criterion and with an average RIN score of 8.70; 29 samples did not meet the criterion). Aminimum of 3.75 ug of total

RNA were used for library construction. RNA libraries preparation and sequencing were performed following standard Illumina

protocols. The following numbers of mouse brain tissue samples per ZT time were used for our diurnal time transcriptomic analysis:

(i). Striatum: ZT0 (9 samples); ZT3 (8 samples); ZT6 (11 samples); ZT9 (9 samples); ZT12 (11 samples); ZT15 (2 samples); ZT18

(4 samples); ZT21 (5 samples). (ii). Cortex: ZT0 (11 samples); ZT3 (12 samples); ZT6 (11 samples); ZT9 (11 samples); ZT12

(12 samples); ZT15 (6 samples); ZT18 (6 samples); ZT21 (6 samples). GEO identifier for the diurnal mRNA data: GSE151565.

Monitoring of locomotor activity
Adult micewere singly housed in cages containing IRmotion sensors (Mini Mitter, Bend, OR), and locomotor activity was recorded as

previously described (Whittaker et al., 2018). Mice were entrained to a 12:12 h light:dark (LD) cycle for a minimum of 2 weeks prior to

collection of 10–14daysof data under LDconditions. Locomotor activity datawere recordedusingMiniMitter (Bend,OR) data loggers

in 3min bins, and 10 days of data under each condition were averaged for analysis. Free-running period (tau, t) was determined using

the c2 periodogram and the power of the rhythm was determined by multiplying the amplitude, Qp, by 100/n, where n = number of

datapoints examined using the El Tempsprogram (A. Diez-Noguera, Barcelona, Spain). Activity amountwas determined by averaging

10 days of wheel revolutions (rev/hr). Activity duration (alpha, a) was determined by the duration of activity over the threshold of the

mean using an averagewaveformof 10daysof activity. Nocturnalitywasdetermined from the averagepercentage of activity conduct-

ed during the dark. Precision was determined by calculating the daily variation in onset from best-fit regression line drawn through

10 days of activity in both LD and DD conditions using the Clocklab (Actimetrics, Wilmette, IL) program. Fragmentation was defined

by bouts/day with a maxgap of 21 min.

Motor assessments using accelerated rotarod
Accelerating rotarod testing was performed in Trank1 knockout mice at 6months of age based on our published protocol (Gray et al.,

2008). Briefly, mice were first trained on an Ugo Basile Accelerating Rotarod for three trials per day for 2 consecutive days. On each

training trial, mice were placed on the slowly rotating axle, at a constant speed of 4 rpm for 60 s (day 1) to 120 s (day 2). Themice were

placed back on the axle if they fell off during the training trials. Themicewere then tested for three trials per day for 3 consecutive days

on acceleratingmode (4 rpm–40 rpm in 5min). For eachmouse, at least 10-min rest was guaranteed between two trials. 5minwas the

maximal time for each testing trial. If a mouse dropped off in less than 20 s, it was re-tested once. Any latency to fall equal or greater

than 20 s was recorded as it was.

Light-dark box test for anxiety-like behaviors
Anxiety-like behavior was assessed in the light/dark box exploration test in Trank1 knockout mice at 6 months of age based on our

published protocol (Wang et al., 2014). The light/dark exploration box is made of plexiglass with a clear (light) side (273 273 30 cm)

and a smaller, fully opaque (dark) side (18 3 27 3 30 cm) separated by a partition with a small opening. The dark side is completely

closed to light. The lighted side is illuminated with a 60-watt light bulb or light with an illuminance of about 400 lux. Light/dark explo-

ration was performed during the light phase of the light/dark cycle. Mice were placed in testing room at least 1 h before testing. The

mouse was put at the center of the clear side at beginning, tested for 10 min and assessed for movements from one side to another.

Initial latency to dark, time in dark, transitions between light and dark were recorded.

Forced swimming test for depression-like behaviors
Forced swimming test was performed in Trank1 knockout mice at 6 months of age based on our published protocol (Wang et al.,

2014). Mice were allowed to acclimate to experimental room at least 1 h before test. One mouse was put into a plexiglass tank or

a transparent plastic cylinder (15 cm diameter) filled with water (23–25�C) to a height of 25 cm and videotaped for 6 min. The last

4 min of video was used to score for immobility, which was defined as absence of all movement except motions required keeping

the head above the water. Time spent immobile was recorded and analyzed.

Oligodendrocyte culture, transfection, and quantification
Isolation and culture of oligodendrocyte precursor cells (OPCs) from prenatal rat brains was performed as previously described (He

et al., 2017). siRNAs for Kdm4b and Prkcqwere purchased from Sigma, St Louis, MO. Rat OPCs were transfected with siRNAs using

Lipofectamine RNAiMAX (Life Technologies, cat# 1377850) according tomanufacturer’s protocol. The cells were harvested 72 h after

transfection and processed for qRT-PCR or immunostaining analysis using anti-Mbp antibodies (Sigma, Cat #PA1-10008, 1:500).

QUANTIFICATION AND STATISTICAL ANALYSIS

Overview of data analysis
We first provide a brief overview of the major steps of expression data preprocessing and network analysis. Raw reads were aligned

to mouse genome mm10 and then summarized to genes. The count data were filtered to remove non- and low-expressed genes,

counts were transformed using variance stabilization and outlier samples were removed. Data were adjusted for batch effects
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and other technical covariates. Next, we constructed a weighted co-expression network and identified modules. We carried out the

enrichment analysis of module genes in in-house and literature gene sets representing biologically informative categories. We next

calculated module eigengenes and analyzed module eigengene correlations and created module eigengene networks. We then

defined day and night pattern (DP and NP) module groups using hierarchical clustering of module representatives in diurnal variation

data and studied overlaps of cortex and striatum DP and NP groups. Although none of these steps depend on our use of UMAP for

visualization, we found that the UMAP helpful in illustrating some of the salient findings.

Preprocessing of striatum and cortex RNA-seq data for the striatal and cortical CoExMap and KO-het perturbation
studies
We preprocessed striatum data in two steps. In the first step, samples from each KO-Het cross were treated as a separate dataset.

We retained mRNA profiles whose observed counts per million reads are at least 1 in at least one-quarter of the samples and trans-

formed the raw counts using variance stabilization (function varianceStabilizingTransformation in R package DESeq2). To check for

potential outlier samples, we used a modified version of the sample network methodology originally described in (Oldham et al.,

2012). Specifically, to quantify inter-sample connectivity, we used Euclidean inter-sample distance based on the scaled profiles

of the 8000 genes with highest mean expression. The inter-sample connectivities k were transformed to Z scores using robust

standardization

Za =
ka � medianðkÞ
1:4826MADðkÞ ;

where index a labels samples, MAD is the median absolute deviation, a robust analog of standard deviation, and the constant 1.4826

ensures asymptotic consistency (approximate equality of MAD and standard deviation for large, normally distributed samples).

Within each KO-Het data set, we removed outliers generally using thresholds Z =�6 (the threshold was varied somewhat to account

for the presence of technical effects in some of the batches). In certain sets we observed within-batch technical effects that were

accounted for using the leading factor determined by Surrogate Variable Analysis (SVA) (Leek and Storey, 2007).

For the combined striatum data set, we repeated the preprocessing starting from the raw counts from outlier-removed samples,

filtered again using the theshold of 1 CPM in at least¼ of the samples and used a relatively high outlier removal threshold of Z =�10 to

avoid removing entire batches. After outlier removal, the data were corrected using Emprical Bayes-moderated linear models for sex,

batch and for the leading surrogate variable from selected batches. This procedure resulted in 407 samples and 15974 genes

retained for network analysis.

The cortex expression data were processed in a single step since they were all sequenced in a single dataset. After filtering and

variance stabilization, outliers were removed using the threshold Z = –6 and data were adjusted for sex and the original KO-Het

dataset from which the mice were taken. These steps resulted in retaining 15793 genes in 100 samples for further analysis.

Calculation of outlier suppression weights
To further minimize the effect of outlier measurements that may remain even after removing outlier samples, we used individual

observation weights constructed as follows. Tukey bi-square-like weights l are calculated for each (variance-stabilized) observation

x, as

l =
�
1 � u2

�2
where u =min(1, |x-m|/(9MMAD)). For the individual KO-Het data sets,m andMMAD are median and modified median absolute de-

viation of the expression values x. MMAD is initially set to equal the median absolute deviation of x and the following conditions are

checked for each gene separately: (1) 10th percentile of the weights l is at least 0.1 (that is, the proportion of observations with

weights <0.1 is less than 10%) (Langfelder and Horvath, 2012) and (2) in each genotype (i.e., generally 8 KO-Het samples and 8

WT controls), the proportion of observation with weight < 0.9 is at most 0.4. If both conditions are checked, MMAD equals MAD.

If either condition is not met, MMAD equals the lowest value for which both conditions are met. This ensures that in each genotype

at least 60%of the observations have high weights and prevents the down-weighing of entire genotypes whose expression levels are

very different from the rest.

For the combined striatum and cortex data, MMAD is initially set to the median absolute deviation of the expression values x

adjusted for batch and technical covariates. For each gene, we check whether 10th percentile of the weights l is at least 0.1 (that

is, the proportion of observations with weights <0.1 is less than 10%). If this condition is met, MMAD equals MAD; otherwise,

MMAD equals the smallest value for which the condition is met.

DE analysis of KO-Het striatum samples
DE testing was carried out using R package DESeq2 (Love et al., 2014) version 1.20 using default settings except when we disabled

outlier replacement (because outliers were suppressed using weights) and disabled independent filtering (since we have removed

non- and low-expressed genes in preprocessing). In data sets with obvious technical effects we used the leading SVA factor (Sur-

rogate Variable) as a covariate. For enrichment and overlap calculations, we retained genes DE at p < 0.01. the rationale for this
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permissive threshold is to retain a reasonable number of genes for overlaps (at the expense of more false positives; however, false

positives are not expected to be concentrated in a specific CoExMap module).

Preprocessing of diurnal transcriptomic data
We applied essentially the same preprocessing steps to the diurnal expression data as well, with the following modifications. The

threshold for removing outlier samples was 5. In the calculation of the weights l, we adjusted MAD such that (1) 10th percentile of

the weights l is at least 0.1 (that is, the proportion of observations with weights <0.1 is less than 10%) and (2) at each time point,

the proportion of observation with weight <0.9 is at most 0.4. This ensures that at each time point at least 60% of the observations

have high weights and prevents the down-weighing of entire time points whose expression levels are very different from the rest.

Furthermore, we used Surrogate Variable Analysis (SVA) (Leek and Storey, 2007) on the variance-stabilized data to identify unwanted

latent variation. We used the leading 6 surrogate variables (SVs) in striatum and 2 in cortex as covariates in association analysis of

individual genes, and we adjusted the variance-stabilized data for these surrogate variables before WGCNA.

Association analysis for diurnal expression data
To improve statistical power to detect diurnal changes, we tested association of each gene with 4 variables defined as follows: for

each of ZT times t=0, 3, 6 and 9 h, the variable It is defined as It(t) = cos[2p(t-t)/24] except it is undefined (value NA in R) when |t-t| = 6

or 18. In other words, the variable It equals 1 for t = t,
ffiffiffi
2

p
=2z0:7 when t and t differ by 3 h,� ffiffiffi

2
p

=2z � 0:7 when t and t differ by 9 h

and �1 when t and t differ by 12 h. A positive (negative) association with It indicates that a gene is upregulated (downregulated)

around time t, or, equivalently, downregulated (upregulated) around time t + 12h. The advantage of testing association with It rather

than DE at time t vs. all other times is better power for detecting periodic oscillations. Additionally, it is less susceptible to loss of

power at time points with a small number of samples.

Association testing was carried out using R package DESeq2 (Love et al., 2014) version 1.20.0 using default settings except we

disabled outlier replacement (because outliers were suppressed using weights) and disabled independent filtering (since we have

removed non- and low-expressed genes in preprocessing). The significance threshold of FDR = 0.05 was used to call significantly

associated genes.

We used the JTK_CYCLE (Hughes et al., 2010) as implemented in function meta2d in R package MetaCycle. This method uses the

Jonckheere-Terpstra-Kendall (JTK) algorithm, which in turn is an application of the Jonckheere-Terpstra (JT) test (a test for detecting

monotonic orderings of data across ordered independent groups). The JTK algorithm is applied to a range of hypothesized orderings

corresponding to a range of user-defined period lengths and phases, in effect finding the best combination of phase and period that

maximizes Kendall correlation between the expression of each tested cyclical ordering (Hughes et al., 2010).

Weighted gene Co-expression network analysis
We used weighted correlation with individual sample weights determined as described above and the ‘‘signed hybrid’’ network in

which negatively correlated genes are considered unconnected. We used a soft thresholding power of 4 for the striatum data and

5 for cortex. These choices reflect the higher number of samples in striatum.

To improve robustness of the identified modules, we used a novel subsampling-based module merging criterion in conjunction

with Dynamic Tree Cut (Langfelder and Horvath, 2007). Dynamic Tree Cut operates by traversing the hierarchical clustering tree

(dendrogram) and merging pairs of branches that do not satisfy all criteria for being called separate modules. The standard criteria

include number of objects on each branch (i.e., minimummodule size), mean dissimilarity among a small number of ‘‘core’’ objects in

each branch and the difference (‘‘gap’’) between the mean dissimilarity of core objects and the merging height of the two clusters. In

addition to these standard criteria (always used in Dynamic TreeCut), ourmodule identification uses two additional criteria. The first is

that the correlation of the first singular vectors (‘‘eigengenes’’) of the two branches must be below a threshold, in this work set at 0.9.

The second criterion evaluates how separable the two branches are with respect to a separate set of cluster labels. Specifically,

consider two branches A and B and a separate clustering. The central idea is to count the fractions of A and B that are covered

by clusters in the separate clustering that have substantial overlap with both A and B. If this fraction is low in both branches, they

can be considered separate modules. If the fraction is high in either of the two branches, it means the branches are not really sepa-

rable with respect to the separate clustering. When multiple separate clusterings are available, the separability measures can be

averaged over the clusterings.

We now describe the dissimilarity measure in detail. Denote the number of objects (genes) on branches A and B by nA and nB,

respectively. Assume that we also have a separate clusteringwith cluster labels ci (index i labels the objects). Denote byC the clusters

that overlap with both A and B. For each cluster we calculate the size of its overlaps with A and B, denoted by oAc and oBc. We then

define the ratios rAc = max½0:5;oAc =ðoAc +oBcÞ� and rBc = max½0:5;oBc =ðoAc +oBcÞ�. Whenmost of the objects in cluster c are in one

of the two clusters, one of the ratios will be close to 1; when the objects in cluster c are equally distributed among the two clusters,

both ratios will be close to 0.5. We next form sums SA =
P
c
oAcrAc +

�
nA �P

c
oAc

�
and SB =

P
c
oBcrBc +

�
n � P

c
oBc

�
. The first term

in these sums essentially weighs the ratios by the overlap sizes. The second term adds the numbers of objects in clusters that overlap

with either A or B but not both.
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Consider a case where both branches A and B are covered by one or more clusters such that about the same number of each

cluster objects are inA andB. Thus,A andB are not distinguishable; the sums are SAznA=2 and SBznB=2, respectively. Conversely,

consider a case where most of branch A is covered by clusters that have no or few objects on branch B and vice-versa. In this case,

the branches are distinguishable; the sums approximately equal the numbers of objects on the respective branch. Thus, we define a

separability statistic for each branch asDA = 2SA=nA � 1 and analogously for the B branch. When multiple clusterings are available,

the separability DA and DB are averaged over all clusterings. The mutual separability of branches A and B is then defined as the min-

imumofDA andDB. This statistic is used in Dynamic Tree Cut: when two branchesmerge on the clustering tree, they aremerged if the

mutual separability is below a user-specified threshold, otherwise they are kept as separate clusters.

To generate the extra clustering assignments, we carried out independent WGCNA analyses on 50 sets of 256 samples randomly

selected (without replacement) from the full set of 407 samples (the fraction of retained samples is approximately 0.63). We then used

the 50 resultingmodule assignments as inputs to Dynamic Tree Cut in the final module identification on the full 407 samples, using the

merging threshold of 0.6 for the branch separabilityD in addition to previously available module identification arguments (deepSplit =

2, minimum module size of 30 and module merging cut height of 0.1). To obtain a similar number of modules in the cortex data, we

used a threshold of 0.57 for D, deepSplit of 2.5 and module merging cut height of 0.19.

Module eigengenes and fuzzy module membership
Since each module groups together correlated genes, it makes sense to represent each module by a single representative expres-

sion profile called module eigengene. The module eigengene is defined as the first singular vector of the standardized module

expression matrix; this vector explains most of the variance of the module. Module eigengenes lead to a natural measure of similarity

(membership) of all individual genes to all modules (Dong andHorvath, 2007). A continuous (‘‘fuzzy’’) measure ofmodulemembership

of gene i in module I is defined as

kMEI
i = cor

�
xi;E

I
�
;

where xi is the expression profile of gene i and EI is the eigengene of module I. The value of module membership lies between�1 and

1. Higher kME indicate that the expression profile of gene i is similar to the summary profile ofmodule I. Since we use signed networks

here, we consider module membership near�1 low. The advantage of using a correlation to quantify module membership is that the

corresponding statistical significance (p -values) can be easily computed. Genes with highest module membership are called hub

genes. Hub genes are centrally located inside the module and represent the expression profiles of the entire module. Some genes

may have high continuous module membership in two or more modules and may, in this sense, be considered members of (or in-

termediate between) several modules.

Module representatives of CoExMap modules in diurnal expression study
To study the diurnal variation of CoExMap modules, we defined, for each of the 18 diurnally-enriched CoExMap modules, a module

representative expression profile by averaging scaled (i.e., centered tomean 0 and scaled to variance 1) expression profiles of genes

in each module with weights proportional to the fuzzy module membership kME raised to the power 4. By construction, the module

representatives are centered (i.e., have mean 0) and hence can be considered to represent expression relative to the mean. For each

module representative we calculated themean expression at each of the 8 time points aswell as within-time point standard deviation,

defined as the standard deviation of the residuals of expression when the means at each time point are subtracted (in other words,

residuals of the expression regressed on time point viewed as a categorical variable). We then retained the 16 modules for which the

difference between the maximum and minimum mean expression (across the 8 time points) is at least twice the within-time point

standard deviation.

Module replicability from module assignments of top hub genes
While module preservation calculations provide evidence that genes of a module are correlated more strongly than expected in an

independent data set, here we want to answer a related but distinct question of how to measure, at the level of individual modules,

whether a module than can be said to correspond to a given reference module can be found in a de novo WGCNA on independent

data. Because interpretation of overlap p values and sizes depends strongly on module size (i.e., for the same fraction of overlapping

genes, p values tend to becomemuchmore significant for larger modules), we decided to focus on a constant number of the top hub

genes in each original module. We chose the number to be 50 because the smallest module contains close to 50 genes; for the two

modules that have less than 50 genes, we retain the entire module. Given WGCNAmodules from a replication analysis, we calculate

overlaps of the top hubs in each original module with the replication modules and choose the module with the highest number of

overlapping genes (which is usually but not necessarily also the module with the statistically strongest overlap). We then require

that the fraction of the top hubs overlapping with the selected module is above a certain threshold (e.g., 0.5) and the overlap p value

is p < 10�20.

Using our set of 103 replication samples, we carried out 5 WGCNA analyses on randomly chosen subsets of 15, 20, 30, 40, 60, 80

and 103 samples using the same approach as for the discovery set of 407 samples, including the module stability analysis, for a total

of 35 replication WGCNA analyses. Since the module stability involves randomly chosen subsets, the 5 analyses on the full set of 103
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samples each return a slightly different module assignment. We varied network construction parameters so that the number of iden-

tified modules remained between 35 and 50, comparable to the 38 modules found in the full analysis of the 407 samples. Each of the

35 replication analyses results in an overlap fraction and log p value or each of the 38 original modules. We then averaged the overlap

fractions and log p values for the 5 analyses at each sample size, resulting in onemean fraction andmean significance (log p value) for

each of the original modules at each replication sample size.

Gene set enrichment calculations
Weused the freely available, open source R package anRichment (https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/

GeneAnnotation/) to calculate the enrichment the WGCNA modules in a large compendium of reference gene sets that includes the

following collections: (1) Cell type and brain region markers collected from various bulk and single cell type studies; (2) Sets of DE

genes andWGCNAmodules from analysis of diurnal expression variation; (3) Sets of DE genes in various patient andmodel organism

studies of Huntington’s Disease curated from the literature by CHDI and available on HDinHD.org under Downloads as HD Gene Set

Enrichment Library; (4) Sets of DE genes and WGCNA modules from an aging study in the striatum (unpublished); (5) WGCNA mod-

ules from our analysis of a series of mouse HDmodels with expanded CAG tract in the Huntingtin (Htt) gene (Langfelder et al., 2016);

(6) Gene Ontology (GO) sets available in annotation packages from the Bioconductor project (Gentleman et al., 2004); (7) Pathway

gene sets (KEGG, Reactome, BioCyc, Lipid Maps) provided by NCBI BioSystems (https://www.ncbi.nlm.nih.gov/Structure/

biosystems/docs/biosystems_about.html, downloaded 2017/10/20); (8) Molecular Signatures Database (MSigDB) version 6.2

(https://www.gsea-msigdb.org/gsea/msigdb/) excluding positional sets (C1), curated gene sets from online pathway databases,

publications in PubMed, and knowledge of domain experts" (C2) and GO (C5); (9) genomic position collection in which each set con-

tains genes in 5 Mb windows; (10) CDC Phenopedia gene sets (Yu et al., 2010); (11) DE sets, WGCNA modules and other gene sets

collected from the literature that we have found useful in our research; (12) protein-protein interactor (PPI) sets curated from the liter-

ature primarily for Huntington’s disease research (Wang et al., 2017); (13) ChEA 2016, ENCODE histonemodifications 2015, ENCODE

transcription factor ChIP-seq 2015 and mirTarBase libraries from Enrichr (Chen et al., 2013).

Fisher exact test (equivalently, the hypergeometric test) was used to evaluate overlap significance. The set of genes in each

WGCNA was used as background and Bonferroni and FDR multiple testing correction was carried out using all reference gene

sets and all modules (separately for each WGCNA).

Construction of cell type and cell cluster marker sets from single cell RNA sequencing data
Gokce et al. (2016): Table S4 of this study contains mean expression of all genes across all clusters (neurons are differentiated here

into D1-MSN, D2-MSN and interneurons). We added a column for ‘‘common MSN’’ by taking the minimum of the D1-MSN and D2-

MSN entry for each gene. The rationale is to define (common D1-andD2-) MSN-specific genes. Next, for each gene and each cluster,

we calculated the fold changes between this cluster and all other clusters. Fold change between mean log-expression x and y is

defined as FC = ð2x � 1 + εÞ=ð2y � 1 + εÞ where ε = 0.01 is a regularization term. For each cluster, we calculate the minimum of

fold changes between this cluster and all other clusters. For each cluster, we then retained genes that satisfy the following criteria:

mean (log2) expression in the cluster x > log2ð2 + 1Þ and minimum of fold changes against all other clusters at least 1.8. When more

than 200 genes satisfy these criteria, we retain the top 200 genes ordered by decreasing minimum fold change.

In addition to cluster-specific gene sets, we also createdmarker gene sets for groups of related clusters: commonMSNs (D1-MSN

and D2-MSN clusters), common neurons (D1-MSN, D2-MSN, interneuron clusters) and immune cells (microglia and macrophage

clusters). Group markers were selected using the minimum mean expression x > log2ð2 + 1Þ in all clusters within the group, fold

change of at least 1.8 between any in-group cluster vs. any out-group cluster and mean absolute fold change among all in-group

clusters less than 2 (this criterion excludes genes strongly DE among clusters within a group).

We further created one set of upregulated and one of down-regulated genes in D1-MSNs vs. D2-MSNs. For these two sets, we

selected at most 200 genes with mean expression and fold change for D1-vs. D2-MSN or vice versa of at least 1.8.

Saunders et al. (2018): We downloaded the raw counts and sample information fromwww.dropviz.org in January 2020. Data from

each brain region was processed and gene sets were created separately (i.e., references to all cells in the following mean all cells in a

particular brain region).

We first excluded samples not assigned to annotated clusters. We then excluded genes whose sum of raw count across all cells

was 50 or less as well as mitochondrial genes (genes whose symbol starts with ‘‘mt-’’). We next excluded cells with extremely high

total counts (more than 95th percentile of the distribution of total counts in all cells) as well as cells with low total counts, defined as the

mode of the distribution of raw reads for each cell. For the latter, we created a histogram of total cell read counts with 1,000 breaks

and took the mode as the location of the histogram bin with the highest count. We then normalized all cells to the same total count

(defined as the geometric mean of the total counts across all retained cells and genes) and finally transformed the data us-

ing log2ðx + 1Þ.
We calculated means and standard errors for all genes in all clusters and carried out unequal variance t-tests of differential expres-

sion among all pairs of clusters. Clearly, t-test is not the ideal approach to count data and perhaps even more so for single cell RNA-

seq, but we expect it to perform well enough for generating sets of marker genes where the differential expression (fold change)

threshold is relatively high and the number of samples (cells) in each cluster is large. We also calculated the corresponding fold

changes between pairs of clusters. Fold change betweenmean expression x and y is defined as FC = ð2x � 1 + εÞ=ð2y � 1 + εÞwhere
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ε = 0:01 is a regularization term. For each cluster, we calculate the minimum of fold changes between this cluster and all other clus-

ters. For each cluster, we then retained genes that satisfy the following criteria: mean (log2) expression in the cluster x > log2ð1:01Þ,
t-test p value p < 10�8 and minimum of fold changes against all other clusters at least 1.5. When more than 200 genes satisfy these

criteria, we retain the top 200 genes with highest fold changes. Conversely, if fewer than 20 genes satisfied the criteria, we increased

the p value threshold by multiplying it by 10 until at least 20 genes satisfied the criteria.

In addition to cluster-specific gene sets, we also createdmarker gene sets for groups of related clusters: commonMSNs (D1-MSN

and D2-MSN clusters), common interneurons (Sst, Chat, Pvalb interneurons), common neurons (D1-MSN, D2-MSN, all 3 interneuron

clusters) as well as certain other groups (e.g., endothelial stalk and endothelial tip where both clusters are present). Group markers

were selected using the same criteria as individual cluster markers, applied to all clusters within group vs. all clusters not in the group

and an additional criterion of mean absolute fold change among all in-group clusters less than 1.5 (this criterion excludes genes

strongly DE between clusters within a group).

We further created one set of upregulated and one of down-regulated genes in D1-MSNs vs. D2-MSNs. For these two sets, we

selected genes with mean expression x > log2ð1:02Þ and the same fold change, p value and marker set size (gene count) criteria

as individual cluster markers. For these two marker sets, only the D1-MSN and D2-MSN clusters were considered, that is, genes

were selected without regard for DE vs. other clusters.

Keren-Shaul et al. (2017): Keren-Shaul et al. provide two types of supplementary tables, one that contains mean expression (UMI

counts) across clusters, and onewith differential expression (p values are always provided butmean expression and fold changes are

not always present) for contrasts that are separate from the main cluster comparisons.

For tables that contain mean expression, we used correlation-based average linkage hierarchical clustering to cluster the mean

expression profiles and define meta-clusters as groups of clusters with average correlation >0.89. From each meta-cluster, we

selected the first cluster and removed the rest from the analysis. In the ADmicroglia data, this removed clusters Granulocytes 2 (clus-

ter X), Immature B-cells (cluster VII) and Microglia 2 (cluster II). In ALS microglia, this procedure removed clusters Granulocytes 2

(cluster XIII), Monocytes 3 (cluster XI) and B-cells 2 (cluster V).

We then selected thosemarker genes for each cluster that hasmean UMI count in the cluster was at least 0.5 and at least 1.5 times

larger than the largest mean UMI count in all other (retained) clusters.

We define fold change betweenmean expression x and y as FC = ðx + εÞ=ðy + εÞ where ε = 0:2 is a regularization term that shrinks

fold changes for genes with low expression. If less than 20 genes satisfied the fold change criterion, we took the top 20 genes with

largest fold changes as themarker set.We also set an upper limit of themarker set sizes at 200 but none of the clusters hadmore than

200 genes with mean UMI >0.5 and fold change >1.5.

We selected top genes for DE tests based on similar criteria (mean UMI >0.5, fold change >1.5, where mean UMI and fold change

are available) plus we required that the nominal DE p value is p< 10� 8.

UMAP representation of the coexpression network
We first retained only genes assigned to a module (these genes have a fuzzy module membership kMER 0.3. We then used the kME

values of the retained genes in all modules as input to the R package umap implementation of UMAP (Uniform Manifold Approxima-

tion and Projection), a method for generating a lower-dimensional representation of high-dimensional data (McInnes et al., 2018).

This essentially amounts to a two-stage dimensional reduction, first reducing the expression data from 407 samples to fuzzy module

membership in 38 modules (i.e., 38 values or ‘‘samples’’ for each gene), then further reducing the 38-dimensional space to 2 dimen-

sions using UMAP. The rationale for using kME values instead of expression data is to create a two-dimensional representation of the

network with an emphasis on intra-modular connectivity.
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