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Major Depressive Disorder Is Associated With
Differential Expression of Innate Immune and
Neutrophil-Related Gene Networks in Peripheral
Blood: A Quantitative Review of Whole-Genome
Transcriptional Data From Case-Control Studies
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ABSTRACT
BACKGROUND: Whole-genome transcription has been measured in peripheral blood samples as a candidate
biomarker of inflammation associated with major depressive disorder.
METHODS: We searched for all case-control studies on major depressive disorder that reported microarray or RNA
sequencing measurements on whole blood or peripheral blood mononuclear cells. Primary datasets were reanalyzed,
when openly accessible, to estimate case-control differences and to evaluate the functional roles of differentially
expressed gene lists by technically harmonized methods.
RESULTS: We found 10 eligible studies (N = 1754 depressed cases and N = 1145 healthy controls). Fifty-two genes
were called significant by 2 of the primary studies (published overlap list). After harmonization of analysis across 8
accessible datasets (n = 1706 cases, n = 1098 controls), 272 genes were coincidentally listed in the top 3% most
differentially expressed genes in 2 or more studies of whole blood or peripheral blood mononuclear cells with
concordant direction of effect (harmonized overlap list). By meta-analysis of standardized mean difference across
4 studies of whole-blood samples (n = 1567 cases, n = 954 controls), 343 genes were found with false discovery
rate ,5% (standardized mean difference meta-analysis list). These 3 lists intersected significantly. Genes
abnormally expressed in major depressive disorder were enriched for innate immune-related functions, coded for
nonrandom protein-protein interaction networks, and coexpressed in the normative transcriptome module
specialized for innate immune and neutrophil functions.
CONCLUSIONS: Quantitative review of existing case-control data provided robust evidence for abnormal expression
of gene networks important for the regulation and implementation of innate immune response. Further development
of white blood cell transcriptional biomarkers for inflamed depression seems warranted.

Keywords: Eigengene, FDR, Gene ontology, Metafor, Protein-protein interaction networks, Reactome, Weighted
gene coexpression network analysis, WGCNA
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Major depressive disorder (MDD) is a syndromal diagnosis,
based entirely on self-reported symptoms and behavioral
signs. No laboratory-based biomarkers are required for a
DSM-5 diagnosis of MDD (1). Indeed, biomarker evidence for
inflammatory disease would conventionally be regarded as
prohibiting a diagnosis of MDD, instead implying an alternative
diagnosis of secondary or comorbid depression. However,
there is increasing interest in the concept that depressive
symptoms, whether diagnosed as MDD or comorbid with
bodily disorders, can be caused, in at least a proportion of
cases, by inflammatory mechanisms (2,3). The evidence sup-
porting this hypothesis has motivated a search for biomarkers
of immune status that could be used to stratify MDD cases and
to predict therapeutic response to anti-inflammatory drugs
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(2,4). Anti-inflammatory drugs have been associated with an-
tidepressant effects in clinical trials for depression (5), in
planned post hoc analysis of a subgroup of patients with MDD
defined by a blood protein biomarker (6), and in clinical trials for
arthritis and other systemic inflammatory or autoimmune dis-
orders often associated with comorbid depression (7–9). It is
already clear that to optimize the potential of anti-inflammatory
interventions for depressive symptoms, new therapeutics must
be precisely guided by development of immune biomarkers
and companion diagnostics (4).

Blood is one of the most clinically convenient tissues to
sample for immune biomarkers, whereas the brain is arguably
the least convenient. For blood biomarkers to be relevant to
the inflammatory pathogenesis of depression, it is assumed
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that the immune status of the central nervous system is
correlated with, or caused by, the immune status of the pe-
riphery. Experimental work in animal models has demonstrated
causal mechanisms that link peripheral inflammation to central
inflammation, altered neuronal function, and quasi-depressive
behaviors (10–13). There is growing evidence that gene tran-
scription measured in human blood is correlated with tran-
scripts measured in many other body systems including the
central nervous system (14,15).

In the early 1990s, the search for inflammatory blood bio-
markers of depression initially focused on acute phase pro-
teins, such as C-reactive protein (CRP), and proinflammatory
cytokines, such as interleukin-6 (16,17). Meta-analyses have
demonstrated that CRP, interleukin-6, and some other cyto-
kines are moderately but robustly increased on average in
MDD cases versus controls (standardized mean difference
[SMD] approximately 0.1–0.5) (18–21). However, the case-
control difference in mean CRP concentration should not
obscure the fact that only a minority of MDD cases (,30%) will
have CRP greater than the upper limit of the normal range (3
mg/L) (22). Moreover, compared with the elevated proin-
flammatory cytokine levels observed in patients with autoim-
mune disorders, the levels found in MDD are at lower (pg/mL)
concentrations, often below the lower limits of quantification or
detectability for standard assays. Cytokine levels are respon-
sive to exercise, diet, stress, time of day, annual season, and
other potentially confounding factors. Most fundamentally,
modestly increased blood levels of a few proteins do not
specify causal pathways with cellular or subcellular precision
(16).

In this context, gene expression in white blood cells has
been increasingly investigated as an alternative class of im-
mune biomarkers. Case-control studies have measured
expression of a subset of preselected candidate genes in
whole-blood, peripheral blood mononuclear cell (PBMC), and
monocyte-sorted samples (23–25). Transcriptional differences
have been repeatedly reported for candidate genes with innate
inflammatory, glucocorticoid, and neuroplasticity-related
functions (25). Recent technical advances have enabled tran-
scriptional measurement of the whole genome, by microarray
or RNA sequencing (RNA-seq) methods, in blood samples and
postmortem brain tissue samples from MDD case-control
studies (26,27).

Here we endeavored to quantitatively review all published
whole-genome transcriptional datasets from peripheral blood
samples in case-control studies of MDD (Table 1). First, we
simply compiled the published overlap list of genes that were
called significant by 2 or more of 10 methodologically het-
erogeneous studies. Second, to mitigate statistical heteroge-
neity between studies, we reanalyzed the subject-level
statistics from 8 openly accessible datasets by technically
harmonized standards so we could compile the harmonized
overlap list of genes that ranked in the top 3% of differentially
expressed genes that were concordantly overexpressed or
underexpressed in MDD for 2 or more primary studies. Third,
we meta-analytically estimated the SMD between cases and
controls for each gene on average over 4 harmonized datasets
from whole-blood samples to compile the SMD meta-analysis
list of genes that were concordantly and differentially
expressed at a false discovery rate (FDR) of 5%. We used
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ontology enrichment analysis, protein-protein interaction (PPI)
networks, and gene coexpression networks to explore func-
tional specialization and network roles of these MDD case-
control gene lists.
METHODS AND MATERIALS

Primary Studies

Eligible studies were identified using PubMed, Google Scholar,
and the Gene Expression Omnibus to search for peer-reviewed
publications indexed by the terms “major depressive disorder,”
“human,” “blood,” and “gene expression.” We found 28
studies reporting genome-wide transcriptional data, 18 of
which used a case-control design. Some of these studies were
subsequently excluded if 1) the transcriptional measurement
was of microRNA, long noncoding RNA, or circular RNA (n =
3);) the study sample was composed solely of participants with
geriatric onset depression (n = 2); 3) multiple patient samples
were pooled before transcriptional measurement (n = 1); or 4)
only candidate genes were reported (n = 2). One study (28)
included data from cells at baseline and after lipopolysac-
charide stimulation ex vivo; the lipopolysaccharide-stimulated
data were excluded from further analysis, while the baseline
data (i.e., before lipopolysaccharide stimulation) were included.
This process resulted in 10 eligible datasets, originally pub-
lished in 9 articles (Table 1), of which 8 datasets were acces-
sible for harmonized reanalysis of subject-level data.

Harmonized Differential Expression Analysis

The harmonized workflow included 1) filtering out, rather than
imputing, missing data or samples with missing metadata; 2)
normalization of expression statistics between samples in the
same dataset, either by quantile normalization for microarray
data or by the DEseq2 median of ratios method for RNA-seq
data (29); and 3) univariate statistical analysis of differential
expression using a linear model that included the same
covariates (age, gender, and batch, where available) for each
study (see Supplement 1 for study-specific nuances of this
procedure). A total of 24,976 genes were measured in at least 2
studies, which was the minimum criterion for a gene to be
included in harmonized analysis.

Compilation of Harmonized Overlap List

For quantitative review of the 8 openly accessible datasets, we
did not immediately discount smaller studies but leveraged
consensus across studies to filter false positives in a way that
is robust to outliers. We ranked genes within each study by
their p value for MDD case versus control differential expres-
sion and thus defined the top 3% most differentially expressed
genes, with the smallest p values, for each primary dataset.
While any cutoff is somewhat arbitrary, the top 3% threshold
includes approximately 500 genes per study, which is com-
parable to the median number of genes defined as statistically
significant across all primary studies by multiple univariate
analyses with p , .01 per gene. The harmonized overlap list
comprised genes present in the top 3% list of 2 or more of the
primary studies that were concordant in direction-of-effect or
sign of differential (over- or under-) expression.
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Table 1. Primary Studies of Genome-wide Blood Gene Expression in MDD Cases Compared With Healthy Controls

Publication Tissue Type
Published
Cohort Platform Covariate Adjustments Reported Findings Data Access/Samples in Reanalysis

Spijker et al.,
2010 (28)

Whole blood 21 MDD
21 CTL

Agilent 44K
Human whole-
genome arrays

None reported
Age-/gender-matched

Genes: Report on 12-gene expression signature
stimulated by LPS. 5 transcripts had directional mismatch
on qPCR

GSE19738
LPS stimulated data not included in re-

analysis
Baseline data available on 33 MDD and 34 CTL

Yi et al.,
2012 (44)

Lymphocytes 8 SSD
8 MDD
8 CTL

Affymetrix Human
Genome U133
plus 2.0 array

None reported
Age-/gender-matched

Genes: Topline results for 48 genes that classified
SSD1MDD vs. CTL

GSE32280

Savitz et al.,
2013 (45)

PBMCs 8 bipolar
21 MDD
24 CTL

Illumina Human
HT-12 v4
Expression
BeadChip

None reported
Age-matched

Genes: 12 protein-coding and 14 non–protein-coding
transcripts identified. 3 transcripts had directional mismatch
on qPCR

Enrichments: 2 pathways highlighted: inflammation;
cell cycle and kinase signaling

GSE39653
21 MDD
24 CTL

Mostafavi
et al.,
2014 (33)

Whole blood 463 MDD
459 CTL

Illumina HiSeq
2000

Adjusted for 39
covariates including
BMI, smoking,
medication, etc.

Genes: 29 genes selected at FDR # .25. 14 additional genes
included at puncorrected , .05 as members of the significant
interferon a/b signaling pathway

Enrichments: Biological functions including innate immune
processes, vesicle trafficking, cell cycle regulation,
and splicing

Pathway enrichment of interferon a/b signaling pathway

Data available from Depression Genes and
Networks study (PI, DF Levinsin) through
application to: https://nimhgenetics.org

462 MDD
458 CTL

Guilloux
et al.,
2015 (46)

Whole blood 34 MDD
33 CTL

Illumina HT12-
v4.0 gene array

Age-/gender-adjusted
(random intercept
model)

Genes: 256 genes reported as significant at p , .01 Data not available

Jansen et al.,
2016 (31)

Whole blood 882 MDD
635 rMDD
331 CTL

Affymetrix U219
array

Age, gender, BMI,
smoking, red blood cell
count

Genes: 130 genes at FDR # .1 for MDD vs. CTL
Enrichments: Upregulated genes: enriched for IL-6 signaling;

downregulated genes: enriched for natural killer cell pathways

dbGaP Study Accession: phs000486.v1.p1

Hori et al.,
2016 (47)

Whole blood 14 MDD
14 CTL

Agilent Whole
Human Genome
4344K array

None reported
Age-/gender-matched

Genes: 230 genes identified by p , .01and fold-change .1.5 Data not available

Leday et al.,
2018 (32)
(GSK-
HiTDIP)

Whole blood 113 MDD
57 CTL

Affymetrix Human
Genome U133
plus 2.0 array

Age, gender, batch,
anxiety

Genes: 130 genes identified in HiTDIP dataset at FDR # .1.
Bayesian consensus analysis of HiTDIP and BRC datasets
identified 165 genes

Enrichments: Upregulated genes: innate immune system;
downregulated genes: adaptive immune system

GSE98793
128 MDD
64 CTL

Leday et al.,
2018 (32)
(Janssen-
BRC)

Whole blood 94 MDD
100 CTL

Affymetrix Human
Genome U133
plus 2.0 array

Age, gender, batch,
anxiety

Genes: 12 genes identified in BRC dataset at FDR # .1.
Bayesian consensus analysis of HiTDIP and BRC datasets
identified 165 genes

Request through https://yoda.yale.edu/uni-
polar-depression-blood-gene-
expression-study

94 MDD
100 CTL

Le et al.,
2018 (48)

PBMC 78 MDD
79 CTL

Illumina HiSeq
3000

WGCNA: batch effect
removed

Module-phenotype
associations corrected
for age, gender, BMI,
and batch

Report on 2 transcriptional network modules associated
with MADRS score

1) 291 genes enriched for apoptosis, B-cell receptor
signaling

2) 109 genes enriched for interactions of VPR with
host proteins

https://github.com/insilico/
DepressionGeneModules

Counts for analyzing antisense strand were
published, and counts from the sense
strand have since been deposited. Both
sense and antisense data were used for
quantitative review.

78 MDD
79 CTL

Gene lists called significant for each study are provided in Table S1 in Supplement 1.
BMI, body mass index; CTL, healthy controls; dbGaP, the database of Genotypes and Phenotypes; FDR, false discovery rate; IL, interleukin; LPS, lipopolysaccharide; MADRS,

Montgomery-Åsberg Depression Rating Scale; MDD, major depressive disorder; PBMC, peripheral blood mononuclear cell; PI, principal investigator; qPCR, quantitative polymerase
chain reaction; rMDD, remitted MDD; SSD, subsyndromal depression; VPR, viral protein R; WGCNA, whole-genome coexpression network analysis.
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We assessed the similarity between studies in terms of the
pairwise concordance of the sign of case-control differential
expression for each gene. For each primary study, we esti-
mated a direction-of-effect vector, with 11 coding overex-
pressed genes and 21 coding underexpressed genes. Then
the pairwise concordance between studies was defined as the
cosine similarity between their 2 direction-of-effect vectors.
Compilation of SMD Meta-analysis List

We estimated the SMD, or Cohen’s d, fitting a random-effects
model using the R package metafor (30) to combine differential
expression statistics across primary studies. This is technically
appropriate for the meta-analysis of homogeneous datasets
without obvious outliers. We therefore restricted this meta-
analysis to the 4 large independent case-control studies of
whole-blood samples (31–33) and to 16,302 genes measured
in at least 3 of the studies. The meta-analytic effect size for
each gene was tested under the null hypothesis of zero case-
control difference in gene expression, with per-gene p values
corrected for multiple comparisons using the Benjamini-
Hochberg method (34), to compile the SMD meta-analysis
list with FDR of 5% and low heterogeneity (s2 , .01).
Enrichment Analysis

We used the enricher and cnetplot functions from the R
package ClusterProfiler. A universe of background genes was
defined by the set of 24,976 genes measured in 2 or more
studies for the harmonized overlap analysis or the 16,302
genes measured in 3 or more studies in the SMD meta-
analysis. Significant enrichment was defined probabilistically,
controlling FDR , 5%, for GO Biological Processes (35),
Reactome (36), and KEGG (37) pathways and visualized as
gene-pathway association networks. We used Fisher’s exact
test to assess the enrichment of harmonized overlap or SMD
meta-analysis gene lists for previously reported gene lists
associated with obesity (38), smoking (39), and biological age
(40) (see Supplement 1).
Protein-Protein Interaction Networks

PPI networks were visualized using the STRINGdb v11.0 (41)
application within Cytoscape v3.7.2 (cytoscape.org). The
probability of the number of edges in each PPI network, under
the null hypothesis that the proteins were coded by a random
set of genes, was calculated by permutation testing.
Table 2. Summary of Key Parameters and Results of 3 Analyse

Analysis
Primary
Studies

MDD
Cases

Healthy
Controls

Transcripts
Measured Ex

Published
Overlap List

10 1754 1145 Variable between
primary studies

52 (

Harmonized
Overlap List

8 1706 1098 24,976 in at least 2
studies

272

SMD Meta-
analysis List

4 1567 954 16,302 in at least 3
studies

343

MDD, major depressive disorder; SMD, standardized mean difference.
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Weighted Gene Coexpression Network Analysis

To provide some independent, normative context for the MDD
case-control gene lists, we accessed a public database of
whole-genome transcription measured by RNA-seq in whole-
blood samples from 755 healthy participants in the GTEx
(Genotype-Tissue Expression) project (42) (see Supplement 1).

Then we used weighted gene coexpression network anal-
ysis (WGCNA) (43) to represent the pattern of correlations
between all possible pairs of transcripts as a signed network or
transcriptome. In this graph, each node is a gene, and each
edge represents the coexpression or correlation between a
pair of gene transcripts. Using WGCNA parameters of soft
power = 14 and deep split = 4, the normative gene coex-
pression network was divided into 17 modules or communities
(Tables S7 and S8 in Supplement 2).

We summarized each primary study by a set of 17 eigen-
genes, calculated by the WGCNA software function multi-
SetMEs, which represented the weighted average expression
in each primary study of all genes affiliated to each of the
normative network modules. The similarity of each pair of
studies was then quantifiable by the plotEigengeneNetworks
function in WGCNA, which calculates the preservation of
normative network community structure between all pairs of
modular eigengenes for each pair of primary datasets (see
Supplement 1).
RESULTS

Primary Studies

Ten studies, originally published in 9 articles (28,31–33,44–48),
satisfied eligibility criteria for quantitative review (Table 1). For 7
studies (28,32,33,44,45,48), the raw, patient-level data for all
participants were openly accessible, and for 1 study (31),
genome-wide differential expression statistics were available
for all participants. Thus, 8 out of 10 eligible studies could be
reanalyzed or meta-analyzed by technically harmonized
methods (Table 2).

Sample size varied from approximately 1500 to approxi-
mately 10 MDD cases across studies. The 3 earliest studies
(published 2010–2013) had small samples (# 20 cases)
(28,44,45); later studies (published since 2014) had larger
samples (approximately 100–1000 cases) (31,33). Some
studies included subgroups of MDD cases, i.e., MDD with high
anxiety (32) or remitted MDD (31).

Seven studies measured transcription in whole-blood
samples, including all cell types; 2 studies measured tran-
scription in PBMCs; and 1 study measured transcription in
s Used for Quantitative Review

Differentially
pressed Genes

Overexpressed Genes in
MDD Cases

Underexpressed Genes in
MDD Cases

45 concordant) 19 26

, concordant 139 133

, concordant 229 114
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lymphocytes. Eight studies used one of a variety of microarray
platforms to measure messenger RNA (6 in whole blood, 1 in
PBMCs, and 1 in lymphocytes); 2 studies used RNA-seq (1 in
whole blood and 1 in PBMCs) (Table 1).

Case-control differences in gene expression were statisti-
cally controlled for different sets of confounding factors
(28,44,45) across studies. Age, gender, and messenger RNA
assay batch were most frequently included as covariates in the
linear model used for estimation of differential gene expres-
sion; however, some studies included zero covariates,
whereas one study included 39 potential confounds (body
mass index, tobacco smoking, medication, etc.) (33). Two
studies used multivariate methods, such as WGCNA, but most
studies reported only mass or multiple univariate analysis of
between-study differences with a genewise threshold for sta-
tistical significance. Three studies used the FDR to account for
the large number of tests (approximately 10,000) required to
survey the whole genome and to control the number of false-
positive tests expected by chance (31–33).

Published Overlap Gene List

Reading across all 10 studies, 1455 genes were called signif-
icant by at least one study (Table S1 in Supplement 2). Fifty-
two genes were called significant by more than one study
(Figure 1; Table S2 in Supplement 2) and therefore constituted
the published overlap list. Of these genes, 45 had concordant
sign of case-control differential expression: 19 genes were
overexpressed and 26 were underexpressed in MDD cases.
Only one gene, SETD6, was called significant by 3 studies
(32,46,48). SETD6 is a protein that methylates the genes for
nuclear factor-kB (49) and PAK4, promoting activation of the
WNT/b-catenin pathway (50). The published overlap list was
significantly enriched for functional terms “cell activation,”
“immune system processes,” and “defense response to other
organisms” (Figure 1; Table S3 in Supplement 2). However, the
number of edges in the PPI network (n = 11) was not signifi-
cantly greater than expected by chance (n = 9; p . .05)
(Figure 1).

Harmonized Overlap List

A total of 543 genes were ranked in the top 3% most differ-
entially expressed genes for at least 2 studies; 52 genes were
common to at least 3 studies; and 3 genes, LPCAT1, MS4A7,
and TROVE2, were among the top 3% in 4 studies (Figure 2;
Tables S4 and S5 in Supplement 2). The 543 genes included
133 genes that were concordantly underexpressed and 139
that were concordantly overexpressed in MDD cases, out of
24,976 gene transcripts measured in at least 2 studies. These
272 concordant genes constituted the harmonized overlap list,
which included significantly more (n = 10) of the 52 genes in
the published overlap list than expected by chance (p , 1029,
Fisher’s exact test).

The harmonized overlap list was significantly enriched for
the functional terms “cell activation,” “endocytosis,” “gran-
ulocyte-activation,” “leukocyte-activation,” “neutrophil-activa-
tion,” and “degranulation” (Figure 2; Table S6 in Supplement
2). Genes in the harmonized overlap list were significantly
overrepresented in the module of the normative transcriptional
network specialized for neutrophil- and granulocyte-mediated
Biological Psy
immunity (Figure 3), and they coded for a PPI network
comprising more known biochemical interactions (n = 259)
than expected for a set of proteins coded by 272 randomly
sampled genes (n = 179; p , 1027) (Figure 2).

Between-Study Similarity of Harmonized
Transcriptional Datasets

By pairwise concordance analysis of the sign of differential
expression, we found the most similar datasets were based
on the largest whole-blood samples (31–33). Studies based
on PBMC samples were more similar to each other than to
studies of whole-blood samples (Figure 3). By preservation
analysis of normative transcriptome community structure, we
again found that the whole-blood studies (28,32,44) were
more similar to each other than to the PBMC-based studies
(Figure 3).

SMD Meta-analysis List

To identify a set of genes that were significantly differentially
expressed across a homogeneous subset of studies, we
estimated the SMD for each gene on average over the 4 in-
dependent studies of whole-blood samples that were most
similar to each other by concordance and preservation anal-
ysis (31–33). This analysis revealed 343 genes (229 overex-
pressed and 114 underexpressed in cases) for which the SMD
between cases and controls was significant at FDR , .05 and
the heterogeneity was low, with s , .01 (SMD meta-analysis
list) (Figure 4; Table S9 in Supplement 2). Of these genes, 21
were also included in the 272 genes of the harmonized overlap
list, which was significantly more than expected by chance
(p , 1027, Fisher’s exact test).

The SMD meta-analysis gene list was highly enriched for
similar pathways to those enriched in the harmonized overlap
list: “cell activation involved immune response,” “granulocyte-
activation,” “leukocyte-activation,” “neutrophil-activation,” and
“degranulation.” Additional enrichments were seen for func-
tional terms “exocytosis,” “cell death,” and “apoptotic pro-
cesses” (Figure 4; Table S10 in Supplement 2). Collectively
these genes coded for a PPI network comprising more known
biochemical interactions (n = 362) than expected for a set of
proteins coded by 343 randomly sampled genes (n = 296; p ,

.0002) (Figure 4). Overexpressed genes in the SMD meta-
analysis list were significantly overrepresented only in the
module of the normative network specialized for neutrophil-
and granulocyte-mediated immunity; underexpressed genes
were significantly overrepresented in the normative network
modules specialized for RNA processing and other functions
(Figure 5).

Assessment of Potentially Confounding Factors

MDD case-control differences in gene expression could be
confounded by many factors that were not consistently
measured in all primary studies, e.g., obesity and smoking, and
can therefore not be statistically controlled as covariates in the
linear model used for harmonized analysis. However, whole-
blood gene expression studies of obesity (38), smoking (39),
and biological age (40) have previously published lists of genes
associated with these potential confounds (Table S11 in
Supplement 2). We tested the 272 genes in the harmonized
chiatry October 15, 2020; 88:625–637 www.sobp.org/journal 629
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Figure 1. Published overlap gene list. (A) Fifty-two genes were called significant by 2 or more of 10 studies in 9 peer-reviewed publications (highlighted in
green or red). Red genes were also included in the harmonized overlap list (Figure 2). (B) Functional enrichment analysis of the published overlap list. Red and
blue highlights indicate a function (cell activation) that was also significantly enriched in the harmonized overlap list and in the SMD meta-analysis list,
respectively. (C) Gene-pathway association network indicating genes affiliated to significantly enriched pathways. (D) Protein-protein interaction networks.
Given the small number of genes, a medium level of confidence, 0.4, was selected to represent interaction edges between protein nodes; disconnected nodes
are not shown. The 4-protein network, comprising EML4, STRN, STRN4, and FKBP4, was not immune related; these proteins are typically found in neuronal
dendrites, where they are involved in calcium signaling and microtubule dynamics, and FKBP4 has been implicated in tau protein pathogenesis (58). Color
indicates functional enrichment. (Inset) Red nodes indicate proteins that were also coded by genes in the harmonized overlap list. mRNA, messenger RNA;
SMD, standardized mean difference.
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Figure 2. Harmonized overlap gene list. (A) A total of 272 genes were ranked in the top 3% most differentially expressed genes with concordant sign in 2 or
more of 8 primary studies (highlighted in red). Green genes were also included in the published overlap gene list, and blue genes were also included in the SMD
meta-analysis list. (B) Functional enrichment analysis of the harmonized overlap list. Green indicates a function that was also enriched in the published overlap
list, and blue indicates a function that was also enriched in the SMD meta-analysis list. (C) Gene-pathway association network indicating genes affiliated to
significantly enriched pathways. (D) Protein-protein interaction network. Given the larger set of genes in the harmonized overlap list, we used a higher level of
confidence, 0.7, to represent edges, and neither disconnected nodes nor pairs of connected nodes were shown. Labeled genes circled in red are involved in
neutrophil granule formation; other representative genes are labeled in black. Color indicates functional enrichment. (Inset) Green nodes indicate proteins that
were also coded by genes in the published overlap list, and blue nodes indicate proteins that were also coded by genes in the SMD meta-analysis list. SMD,
standardized mean difference; tRNA, transfer RNA.
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Figure 3. Normative whole-blood transcriptional network and similarity of primary studies. (A) WGCNA of whole-genome transcripts measured by RNA
sequencing in whole-blood samples from 755 healthy controls in the independent GTEx cohort (42). The dendrogram (left panel) and topological overlap
network (right panel) illustrate a community structure of 17 modules distributed across multiple connected components. Topologically, genes affiliated to the
same module are strongly coexpressed with each other and weakly coexpressed with genes in different modules. Biologically, genes affiliated to the same
module were enriched for proteins that shared the same biochemical or cellular functions, as indicated by color coding of nodes (bottom). (B) Harmonized
control data from each study were used to calculate 17 eigengenes corresponding to the modules defined in the independent normative transcriptome. The
similarity of each pair of primary studies was then quantified in terms of preservation of the normative network community structure (white text and color code
in panel A). Hierarchical clustering on the pairwise preservation density scores highlights the greater similarity between whole-blood studies. (C) Pairwise
concordance of the differential expression direction-of-effect vectors was estimated for each pair of studies. Hierarchical clustering on the pairwise
concordance scores highlights the relatively high similarity between studies of whole-blood samples and the low similarity between studies of whole-blood and
PBMC samples. ER, endoplasmic reticulum; IL-17, interleukin-17; MHC, major histocompatibility complex; PBMC, peripheral blood mononuclear cell;
WGCNA, weighted gene coexpression network analysis.
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overlap list and the 343 genes in the SMD meta-analysis list for
intersection with these prior gene sets. There were no signifi-
cant intersections between either of the 2 MDD-related lists
and the smoking- or age-related gene sets; there were 2
obesity-related genes (RPS7 and RPS3A) in the harmonized
overlap list (p = .03).
632 Biological Psychiatry October 15, 2020; 88:625–637 www.sobp.or
DISCUSSION

We reviewed 10 whole-genome transcriptional case-control
studies of MDD, collectively including data on 1754 MDD
cases and 1145 healthy controls (Table 1). We have reported 3
principal analyses (Table 2), of which only the first is descrip-
tive: we described the set of genes reported as significant by
g/journal
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Figure 4. SMD meta-analysis gene list. (A) A total of 343 genes were identified with significant case-control difference in expression at FDR , .05, and the
top 30 overexpressed and underexpressed genes, each with jSMDj $0.2, are shown here. Red genes were also included in the harmonized overlap gene list.
(B) Results of functional enrichment analysis of the 343 genes in the SMD meta-analysis list. Red indicates functional terms that were also significantly
enriched in the harmonized overlap list. (C) Gene-pathway association network indicating genes affiliated to the most significantly enriched pathways. (D)
Protein-protein interaction network. Color of each node indicates functional enrichment of corresponding proteins. (Inset) Red nodes indicate proteins that
were also included in the harmonized overlap list. FDR, false discovery rate; SMD, standardized mean difference.
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Figure 5. MDD-related differential gene expression in the context of the normative transcriptome. (A) Table summarizing overlap between MDD case-control
gene lists (rows) and modules of the normative gene coexpression network. Significant p values, by Fisher’s exact test, are highlighted in shades of red. For
this analysis, the SMD meta-analysis list was subdivided into genes that were significantly overexpressed (n = 229) or underexpressed (n = 114) in MDD cases
with FDR # .05. (B) The omnibus list of 660 genes that were included in at least 1 of the 3 lists, with concordant sign of differential expression, were projected
onto the normative transcriptome (see also Figure 3). (Left panel) Nodes corresponding to differentially expressed genes are colored according to their
normative modular affiliation. (Right panel) Nodes corresponding to differentially expressed genes are colored green if they were overexpressed in MDD cases
and red if they were underexpressed in MDD cases. (C) Gene-pathway association networks for the 3 normative modules that were most significantly enriched
for genes differentially expressed in MDD. FDR, false discovery rate; IL-17, interleukin-17; MDD, major depressive disorder; SMD, standardized mean
difference.
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one or more of the primary studies. This preliminary effort to
“read across” primary studies highlighted the high degree of
heterogeneity between studies on many important factors,
including the blood tissue type (whole blood or PBMCs), the
microarray or RNA-seq platforms used to measure whole-
genome transcription, the diagnostic and eligibility criteria
used to define depressed cases, and the methods used for
statistical analysis. To assess and mitigate the statistical
contribution to heterogeneity, we accessed individual whole-
genome transcripts or differential expression statistics
deposited in open repositories by 8 studies and completely
reanalyzed these primary data using identical models and
standards for statistical significance. Finally, to address the
cellular contribution to heterogeneity, we restricted attention to
4 studies of whole-blood samples, which represented the
majority of the available case-control data (Table 2).

We first compiled the published overlap list of 52 genes that
were called significant by at least 2 primary studies. This list
was enriched for cell activation and defense response to other
organisms, but it did not code for a densely connected PPI
network (Figure 1). It is a signal, but not a strong one, probably
owing to high methodological heterogeneity. We therefore
estimated differential expression statistics by technically
harmonized methods and then compiled the harmonized
overlap list of genes that were ranked in the top 3% of the
most differentially expressed genes, with concordant sign of
overexpression or underexpression, in at least 2 studies. This
list comprised 272 genes that were enriched for neutrophil and
other innate immune-related functions and coded a set of
proteins with more known biochemical interactions between
them than expected by chance (Figure 2).

However, harmonized data analysis disclosed another
important cellular source of heterogeneity between studies: the
use of whole-blood versus PBMC samples. Primary studies
measuring differential expression in whole-blood samples
were more consistent with each other and with the modular
community structure of the normative transcriptome (42) than
with the results of primary studies based on PBMCs (Figure 3).
This is not surprising, as PBMC samples by definition exclude
platelets and neutrophils (the largest single class of peripheral
immune cells), so PBMC transcripts are expected to have
lower levels of neutrophil-related gene expression than whole-
blood transcripts.

To control cellular heterogeneity, we focused on 4 primary
studies that had measured gene expression in whole blood.
We meta-analytically estimated the SMD between MDD cases
and healthy controls in expression of each of 16,302 genes
measured in at least 3 studies and probabilistically thresholded
these statistics with an FDR of 5%. The SMD meta-analysis list
comprised 343 genes that were differentially expressed with
concordant sign in depressed cases compared with healthy
controls (Figure 4). There was a significant degree of conver-
gence between this list and the harmonized overlap list. The
SMD meta-analysis list was also significantly enriched for
neutrophil activation and degranulation, apoptosis, and trans-
membrane signaling, and it coded a PPI network that was
significantly more densely connected than expected by
chance. The 229 genes that were concordantly overexpressed
in the SMD meta-analysis list were significantly affiliated to the
Biological Psy
module of the normative transcriptome specialized for
neutrophil functions (Figure 5).

These methodologically harmonized results more convinc-
ingly indicate that MDD is robustly associated with increases in
expression of neutrophil-related and innate immune genes. It is
a stronger signal, but what does it mean biologically and in
relation to the pathogenesis of depression?

Biologically, this transcriptional signal from whole blood
could represent either an MDD-related increase in the number
of neutrophils, or relative overexpression of inflammatory
genes by circulating neutrophils, or both an increased number
and activation status of neutrophils owing to expansion of
more developmentally immature and hypersegmented sub-
classes of neutrophils (51). We were unable to explore this
issue any further immediately owing to lack of cell count data
provided by the primary studies. There is prior evidence that
MDD is associated with increased numbers of neutrophils (52)
and increased neutrophil/lymphocyte ratio (53–55). Flow
cytometry and transcriptional analysis of sorted cell classes or
single cells could be used in the future to resolve the immune
cellular phenotype and its relationship to transcriptional
changes more precisely.

In relation to pathogenesis of MDD, these case-control
differences in innate immune gene expression (SMD approxi-
mately 0.2–0.5) (Figure 4) are of the same order of magnitude
as previously reported case-control differences in CRP and
inflammatory cytokines (SMD approximately 0.1–0.5). There is
some prior evidence that increased neutrophil counts are
positively correlated with increased inflammatory proteins in
MDD (52), and neutrophils are known to produce many cyto-
kines and chemokines (56). Thus, neutrophil expansion and/or
activation may constitute at least one of the cellular sources of
peripherally increased proinflammatory cytokines in MDD,
which in turn could communicate across the blood-brain bar-
rier to cause central immune state changes and depressive
behaviors (10–13). We expect that these small- to moderate-
sized case-control group mean differences are representative
of one or more subgroups of inflamed cases, e.g., with hy-
perphagia and higher BMI (57), included within the broad
clinical syndrome of MDD.

The main technical focus of our review has been to mitigate
statistical and cellular sources of heterogeneity when
comparing or aggregating data between primary studies. We
have been able to do this post hoc, from openly accessible or
published data, but only to some extent. There are some as-
pects of methodological heterogeneity, such as microarray
versus RNA-seq assays or differences in diagnostic or eligi-
bility criteria for caseness, that we have not addressed. There
are also many potential confounding factors, e.g., comorbid
medical disorder, that were not consistently controlled a priori
or easily controllable post hoc across this set of studies. We
benchmarked the MDD-harmonized gene lists against prior
lists of genes differentially expressed in association with age,
smoking, and obesity and found little evidence for confounding
effects on blood transcription. However, future biomarker
studies of depression might endeavor to go beyond case-
control binarization and collect richer clinical data to explore
the relationships between immune profiles and subsyndromes
of MDD and comorbid depression.
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Current best practice in the bioinformatics community in-
cludes depositing genome-wide expression data in an
accessible repository, such as the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) or the database of Geno-
types and Phenotypes (https://www.ncbi.nlm.nih.gov/gap/).
Our results clearly demonstrate the value added to primary
publications if the raw data on individual participants are
openly accessible for harmonized reanalysis and meta-
analysis. It is hoped that future studies will share measure-
ment, analytic, and open science protocols to minimize
unnecessary heterogeneity between studies and to accelerate
collective convergence on optimal standards.

Overall, we consider that this quantitative review provides
encouraging evidence of consistent and significant blood tran-
scriptional changes, especially in neutrophil and other myeloid
cell–related genes, which merit further investigation as candi-
date biomarkers of depression associated with inflammation.
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