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MOTIVATION Bulk and single-cell RNA sequencing are the most widely used technologies to study gene
expression patterns at the population or single-cell level. The size of datasets generated by these analyses
raise computational challenges in data analysis that typically require expertise in bioinformatic methods for
data visualization. Rapidly evolving sequencing techniques and statistical methods create a bottleneck for
scientists whowant to analyze RNA-seq datasets but do not have in-depth coding knowledge to learn a new
programming language or software tool. Here, we present a web-based application that gives scientists
without expertise in bioinformatics the ability to upload bulk and single-cell RNA-seq datasets and rapidly
obtain data visualization and differential gene expression analysis.
SUMMARY
SEQUIN is a web-based application (app) that allows fast and intuitive analysis of RNA sequencing data
derived for model organisms, tissues, and single cells. Integrated app functions enable uploading datasets,
quality control, gene set enrichment, data visualization, and differential gene expression analysis. We also
developed the iPSC Profiler, a practical gene module scoring tool that helps measure and compare pluripo-
tent and differentiated cell types. Benchmarking to other commercial and non-commercial products under-
scored several advantages of SEQUIN. Freely available to the public, SEQUIN empowers scientists using
interdisciplinarymethods to investigate and present transcriptome data firsthandwith state-of-the-art statis-
tical methods. Hence, SEQUIN helps democratize and increase the throughput of interrogating biological
questions using next-generation sequencing data with single-cell resolution.
INTRODUCTION

Over the past decade, RNA sequencing (RNA-seq) has become

the method of choice for gene expression profiling and single-

cell analysis (single-cell RNA-seq [scRNA-seq]).1 Massively par-

allel next-generation sequencing is increasingly accessible and

affordable for the broader scientific community. However, as

new sequencing technologies and statistical methods are devel-

oped and rapidly evolve,2–4 each new approach requires testing

and learning a new programming language or software tool. This

is a particular challenge for scientists that want to take advan-

tage of RNA-seq but do not have special expertise or training
This is an open access article und
in data analysis and bioinformatics. Other challenges include

the need to merge independent sequencing libraries that are

generated de novo or downloaded from public repositories con-

taining vast amounts of data from the published literature. For

instance, to draw meaningful biological conclusions, batch

correction is of great relevance for reproducible data compari-

sons and hypothesis generation.5 Furthermore, visualizing and

presenting the data are integral parts of the scientific process

and inform data interpretation, flexible decision making, and

project planning. Confidence in the robustness and reproduc-

ibility of any data analysis workflow is critical for saving time

and resources, thereby enabling high-throughput multi-scale
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Figure 1. Versatility of SEQUIN for bulk and single-cell RNA-seq

Overview of experimental models and next-generation sequencing that generate transcriptomic datasets. Two paths of data generation are shown: ‘‘bulk’’

populations of cells from homogenized organisms, tissues, or cultured cells or single-cell suspension after dissociation. The first path leads to averaged gene

expression values of the transcriptomes, while the second creates a transcriptome library of each cell. Either sequencing data format can be input to SEQUIN for

analysis, which is a free and fully featured R/Shiny application for both types of data.
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experiments. Addressing these challenges and considering the

complex and multifaceted nature of analyzing sequencing

data, we established a platform that we named SEQUIN. Specif-

ically, we used the recommended National Institutes of Health

(NIH) principles of scientific data management, including find-

ability, accessibility, interoperability, and reusability.6 SEQUIN

represents a versatile R/Shiny app for real-time analysis and

visualization of bulk and scRNA-seq raw count and metadata.

Among the unique advantages of SEQUIN is that it enables

novice users to perform complex data analysis, interactive

exploration, and generation of publication-ready figures in one

place. SEQUIN is available as open source and is currently the

most comprehensive platform for web browser-based gene

expression analysis (https://sequin.ncats.io/app/).

RESULTS

Workflow for bulk RNA-seq data analysis
SEQUIN is a fully integrated, user-friendly, and scalable

approach for analyzing RNA-seq data (Figure 1). To illustrate a

typical workflow in SEQUIN, we first analyzed RNA-seq data

derived from a well-established in vitro model system, which is

based on controlled differentiation of human embryonic stem

cells (hESCs; WA09 cell line) into the primary embryonic germ

layers. In these standardized experiments, hESCs were effi-

ciently differentiated into lineage-committed ectodermal, meso-

dermal, and endodermal precursor cells under chemically

defined conditions. Following differentiation, we generated

both bulk and single-cell RNA-seq data for analysis using

SEQUIN to confirm efficient differentiation of the WA09 cell line

into the three germ layers. Detailed information is provided in
2 Cell Reports Methods 3, 100420, March 27, 2023
our previously published study,7 with brief data interpretation

below. We uploaded the entire dataset from these experiments

(bulk samples, dataset named ISB003_WA09) and removed

pseudogenes, ribosomal and mitochondrial genes, and genes

with row sums less than 10 and transformed the data for normal-

ization (log2[count + 1]; Figure 2A). These are the default settings

recommended for routine use or novice users. After outlier

detection and/or optional downsampling, users can visualize a

portion of the count matrix, the metadata, and visualize the dis-

tribution of total reads per sample (data summary step). A total of

16 samples were analyzed (n = 4 for pluripotent and lineage-

committed cells), and 21,324 genes remained after filtering.

The samples had relatively balanced counts per cell, with an

average of 21million counts per sample (quality control step; Fig-

ure 3A). Principal-component analysis (PCA) in the data structure

step revealed clustering of replicates by sample with 51% and

33% of the variance explained by principal component 1 (PC1)

and PC2, respectively (Figure 3B). At this point, data are pre-

pared for either differential gene expression (DGE) analysis, or

one can skip forward to use the iPSC Profiler, which will be dis-

cussed below. We performed DGE analysis using pairwise two-

group comparisons with DESeq2 with a minimum fold change of

1 and an adjusted p value of 0.05 (Figure 2B). Of note, several

other modeling options are available in the app including edgeR

and limma-voom. These choices automatically generate a pre-

view of the linear model design next to the ‘‘Submit’’ button (Fig-

ure 4A). Because no batch effect across these samples was

observed in this particular experiment, we did not batch correct

(see STARMethods). The output for DGE is a table and plot of the

total number of genes that are up- or downregulated (Figure 4B).

The volcano plot section provides options to view volcano or MA

https://sequin.ncats.io/app/
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(ratio intensity) plots as well as a significant filtered DGE table

(Figures 4C and 4D). A volcano plot shows log2 fold change

versus �log10 p values per gene, while an MA plot depicts log

fold change versus mean expression values between two sam-

ples or groups. Guided by pairwise DGE comparisons, we

explored upregulated differentially expressed (DE) genes and

confirmed the expression of lineage-specific genes. Cell type-

specific DE genes were significantly upregulated in pluripotent

and differentiated cells. As mentioned above, more detailed in-

formation on experimental results is provided in our previous

publication.7 Using such RNA-seq datasets, it is possible to

view a heatmap of the top 100 DE genes by contrast or by select-

ing a custom gene list. Cells can also be clustered by gene

expression using two unsupervised approaches: weighted cor-

relation network analysis (WGCNA)8 or k-medoids9 (Figure 5).

These options are also available for scRNA-seq, as described

below.

Analyzing scRNA-seq data
To perform scRNA-seq data analysis, we again used a recently

published dataset (IS006_WA09) that includes well-character-

ized human pluripotent and differentiated cells generated by

standardized methods.7 Prior to data submission to the server,

the full set of cells was randomly downsampled from 16,582 to

10,000 cells, and all rRNA, mitochondrial, and pseudogenes

were filtered out. The option to downsample was implemented

to reduce count matrix load time and the RAM constraints in R.

If the user prefers not to downsample and is willing to wait longer,

the entire dataset can be uploaded. Of note, data are stored only

for the duration of the app session. Hence, all user-uploaded data

from a session is immediately destroyed once the session ends.

The widely used standard Seurat workflow10 is incorporated

into SEQUIN with options to adjust the number of PCA dimen-

sions either by setting a cumulative percentage of variance in

the PCs or using the default of 75% and the range of clustering

resolutions. Prior to performing downstream analyses, the user

can optionally view a snapshot of the count matrix, inspect the

metadata, or preview the distribution of cells or samples after

the dataset has been fully loaded. The samples analyzed here

had relatively balanced counts per cell (median 10,000) and

the threshold forminimum counts removed poor quality or empty

cells. Overall variance between samples can be visualized.

Moreover, review of dimensionality reduction by selected meta-

data factor is possible with PCA, t-stochastic neighbor embed-

ding (tSNE), and uniform manifold approximation projection

(UMAP). Four distinct cell clusters were identified and are de-

picted in the UMAP plot (Figure 6A).

Next, we submitted the scRNA-seq dataset with varied reso-

lutions from 0.1 to 1 by steps of 0.1. As expected, higher resolu-

tions generated more clusters. Four to 16 clusters were created

for resolutions 0.1 to 1, respectively. On the basis of the UMAP,
Figure 2. Overview of workflows describing SEQUIN

(A) Diagram depicting the workflow for the bulk and single-cell RNA (scRNA) sequ

sections of the app.

(B)Workflow for analysis sections specific to bulk or scRNA. The select resolution

using Seurat.’’

(C) Workflow for advanced scRNA clustering with key features and options.
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Clustree plot (Figure 6B), and silhouette plot (Figure 6C) we

concluded that 0.1 was the optimal resolution for clustering the

different developmental lineages (Figures 6D and 6E). Clustree

is helpful to identify the best resolution for cell clustering on the

basis of the distribution.11 Each resolution is represented by a

row, with circle sizes corresponding to the total number of cells,

and arrow thickness indicating the proportion of cells that flow

from one cluster to another. Over-clustering occurs when there

is frequent crossover of cells from one cluster to another at

higher resolutions, and the user should choose a stable resolu-

tion lower than this point (Figure 6B, rows 5–10). In the silhouette

plot, the positive silhouette widths indicate that a given cell is

closer to other cells within that cluster than to other clusters,

which is ideal.12 Together with the dimensionality reduction

and Clustree plots, we confirmed that 0.1 resolution clearly

separated different cells. The UMAP revealed that four clusters

separate cells on the basis of their developmental stage and line-

age specification, which further supports the 0.1 resolution for

accurate clustering. Furthermore, the metadata can be explored

in various other ways as presented (Figures S1A and S1B).

Considering the UMAP, Clustree plot, and silhouette plot

together, we confirmed good clustering of the different develop-

mental lineages, indicating initial pluripotency and subsequent

efficient differentiation of the human iPSC line (WA09).

Prior to performing DGE, we inspected lineage-specific genes

using the selection from the drop-downmenu of available genes.

Gene expression can be displayed by cluster or sample name in

the form of bar plots and in PCA, UMAP, and tSNE. Example

UMAPs are shown for POU5F1, HES4, DKK1, and PTGR1

(Figures S2A–S2H). SEQUIN also provides alternative options

for DGE analysis. The user can compare a given cluster to the

rest or select a factor in the metadata and the desired compari-

sons (Figure S3). Using an interactive UMAP, tSNE, or PCA plot,

the user can manually lasso-select cells to perform DGE and

gene set enrichment analysis (GSEA) and download these ta-

bles. Lasso selection of cells to define new, custom clusters on

the basis of the user’s knowledge is a powerful feature of

SEQUIN. To identify the uniquely DE genes per cluster, Custom

DGE was performed (Figure 6E) and lineage-specific results

were consistent with a recent report.7 Several thousand statisti-

cally significant genes were up- or downregulated for pluripotent

and differentiated cells. The user can explore pairwise DE genes

in a volcano plot or by generating a DE genes table on the basis

of log fold change and adjusted p value thresholds. Although we

provide core differential expression analysis, there are many op-

tions to further explore these genes. The user can generate a

heatmap of the top 50 DE genes or by specifying a custom list

of genes across samples. A selected metadata grouping factor

for cells can be overlaid onto the heatmap samples. For instance,

we targeted a set of genes involved in cell differentiation that

showed scaled, normalized gene expression varied greatly by
encing data submit options, data summary, quality control and data structure

(in dashed box) is only available when the user selects ‘‘Runmultiple resolutions



Figure 3. Bulk RNA-seq analysis

(A) Quality control step showing total reads by differentiation stage, which are consistently on average 21 million total reads by differentiation stage of dataset

ISB003 (WA09).

(B) PCA plot of samples and replicates showing that PC1 accounts for 51% and PC2 33% of the variance in the data, respectively. Samples and replicates

separate strongly by PC1 and PC2 clustering depending on lineage specification.
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lineage (Figure 6D). Subsequently, we performed GSEA on the

statistically significant DE genes that were upregulated in each

respective cluster (lineage) versus the rest of the clusters (the

top 100 DE genes upregulated in the selected cluster). GSEA

calls the Enrichr API13 with a mirror of all gene set libraries avail-

able from that resource, including the popular Kyoto Encyclo-

pedia of Genes and Genomes (KEGG), Gene Ontology, and

ARCHS4.14 To our knowledge, the unified integration of DGE

and GSEAs in one R/Shiny app is unique to SEQUIN.
Next, a valuable app feature is the ability to merge existing

clusters or cluster cells on the basis of the mean, median, or

sum of gene(s) expression (Figures 2C and S4). A resolution of

0.1 created four distinct clusters, clearly separated by tissue line-

age. Alternatively, a resolution of 0.3 was able to further separate

the endoderm and ectoderm clusters to give a total of six clus-

ters. If after exploring the Clustree and other plots, it becomes

clear that a different clustering would be optimal, the user can

backtrack to merge clusters, which can then be named and
Cell Reports Methods 3, 100420, March 27, 2023 5
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given a comment to describe the merge. By clicking ‘‘Save to

database,’’ the updated metadata will be saved in the Relational

Database Service (RDS) and can be reloadedwith the count data

for downstream analysis (Figures S5A–S5D). Only metadata

changes to existing experiments will be saved; custom uploaded

data will not be stored in the RDS.

iPSC profiler
The iPSC Profiler is a special feature of SEQUIN and was devel-

oped to characterize cell identities representing human pluripo-

tent and lineage-committed cells. It can be used to complement

and extend PluriTest and ScoreCard, which are previously es-

tablished resources to measure pluripotency and embryoid

body differentiation on the basis of microarray technology and

qPCR.15–17 The iPSC Profiler was established as a gene module

scoring tool for both bulk and scRNA-seq data using the Seurat

AddModuleScore function, which classifies single cells or whole

samples as pluripotent, ectodermal, mesodermal, or endo-

dermal (Figure 2A).16 Module scores differ from the simple

average of a gene set in that they are directly comparable across

set sizes and contents. We ran the iPSC Profiler for an exemplary

dataset (IS006_WA09) and found that module scores were well

matched to the ScoreCard modules for pluripotency, ectoderm,

mesoderm, and endoderm (Figure 7A). We then generated a

UMAP of the pluripotency module (Figure 7B) and a reference

UMAP colored by expected cell lineage (Figure 6A). Module

scores were highest for endoderm and pluripotency gene sets

(Figures 7B and 7C). Ectoderm and mesoderm cells scored rela-

tively low for their gene sets, with only a subset of the cells having

high scores for these two modules (Figures 7D and 7E). The

housekeeping gene module scores were consistent across all

lineages (Figure 7F). Altogether, the iPSC Profiler is a practical

tool to compare pluripotent and lineage-committed cells.

Comparison with other data analysis methods
Although there are many software applications or platforms with

a graphical user interface that broadly work with RNA-seq data,

each typically addresses only a few steps in a full analysis pipe-

line, may or may not be hosted on a public server or are not freely

available, among other considerations (Table 1). We evaluated

features in popular commercial and open-source tools that are

similar in scope to SEQUIN.18–21 We only chose tools that begin

with a raw gene count by samples table and a metadata table,

and result in outputs of tables and figures, including DE genes,

heatmaps, and clustering plots. Overall, SEQUIN was unique in

that it is a fully featured resource, for both bulk and single cell

data, and is freely available without server start-up overhead,

while offering rigorous statistical methods. Among the apps

evaluated, only two could handle both kinds of data with start-

to-finish analysis in one place, and they are commercial products
Figure 4. Example analyses of DE genes

(A) DGE analysis options for the bulk RNA-seq analysis of ISB003 (WA09) showing

cutoff is 0.05, with a minimum fold change of 1 and the linear model �differentia

(B) Total DE genes by linear model showing the total number of genes up- and d

(C) MA plot of total up- and downregulation DE genes for the ectoderm versus e

(D) Volcano plot of total up- and downregulation DE genes for the ectoderm and e

default statistical methods, which are the Wald test and Benjamini-Hochberg mu
(Partek Flow and Illumina BaseSpace DRAGEN). However, those

platforms do not include all features that are available in

SEQUIN, andwhen comparing across all platforms, none offered

cell and gene module scoring similar to the iPSC Profiler. Outlier

detection and removal in bulk data were nearly completely ab-

sent in other apps. Critically, in order to accomplish certain

SEQUIN-equivalent tasks, it was sometimes required to do

manual or command-line work outside of the app such as sub-

setting samples, library merging, or DE model customization.

This latter feature was noticeably missing or modestly featured

in other free apps, perhaps out of simplicity, but with the result

that complex experimental designs would be impossible to

accurately model (such as ‘‘time 3 treatment 3 cell line’’).

Also, display of data or model results varied widely. The level

of plotting customization options was heterogeneous in terms

of the plot type, content, and graphical design, even in the com-

mercial products. Plot types commonly used in the workflow to

show gene expression levels were not offered, such as violin,

dot plot, tSNE, or UMAP. We provide all the previously

mentioned plot types and analysis features in one interactive

environment. This cross-platform benchmarking is currently

the best estimation for comparable apps; however, each app

is unique and specific needs are user-dependent.

In-app benchmarking
To help users understand the processing time for running

SEQUIN, we time-stamped each step using scRNA-seq data-

sets of varying sizes from 90 to 19,759 cells (which are the da-

tasets example_sc and IS006_11, respectively; Table S1). With

pre-computed cell clusters and using all cells without down-

sampling, time to load data was between 8 s and 29 min.

The most computationally intensive step was cell clustering

when multiple resolutions were requested (0.4–2.8 in steps of

0.4), which took 13 s to 1.5 h for the smallest and largest data-

sets mentioned. A relatively long clustering step is expected for

any single cell analysis algorithm and users are allowed to pro-

ceed given a notice that it will take time. We adjusted the

R/Shiny server timeout to allow up to two hours of processing

wait. After clustering, the remaining steps took between one

second and 3 min 45 s to run (custom DGE on the largest

dataset). Users will experience shorter wait times when default

data load settings are used and/or they downsample cells to at

least 10,000.

DISCUSSION

Analyzing and integrating single-cell and bulk RNA-seq data has

become a powerful approach in biomedical research. Practical

cost-efficient strategies are required to handle large datasets,

compare disparate and diverse biological systems, identify
two-group comparisons by differentiation using DESeq2. The adjusted p value

tion.

ownregulated in the ectoderm versus endoderm comparison.

ndoderm comparison.

ndoderm comparison. Test p values and adjusted p values come from DESeq2

ltiple test correction.
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Figure 5. WGCNA and k-medoid clustering

(A and B) Weighted gene co-expression network analysis (WGCNA) clustering of ISB003 (WA09). The WGCNA gene dendrogram for ISB003 (WA09) is based on

the hierarchical clustering of all genes. Colors below the row and column dendrograms are dynamic tree cuts, which indicate size (total number of cells per

cluster). TheWGCNA topological matrix plot is the correlation between pairs of genes and pairs of genemodules. A k-medoids consensus matrix heatmap based

on all genes and samples from the same dataset (B).

(C) k-medoids heatmap reflects an estimate of the similarity between pairs of genes.

8 Cell Reports Methods 3, 100420, March 27, 2023
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Figure 6. Analysis of iPSC differentiation into embryonic germ layers

(A) UMAP clearly separates clusters by differentiation stage.

(B) Clustree flowchart identifies how cells sort into clusters at various resolutions.

(C) Silhouette plot cleanly separates clusters at 0.1 resolution.

(D) Interactive heatmap with a custom set of lineage-specific genes.

(E) Total up- and downregulated DE genes by differentiation stage compared with the rest of the clusters.
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biomarkers, and measure relevant endpoints and signatures in

molecular medicine. To democratize and standardize this pro-

cess, we developed SEQUIN as a standalone data analysis

and visualization platform. Using exemplary datasets derived

fromawell-defined human stem cell model, we studiedmultiline-

age differentiation of hESCs and iPSCs and performed compar-
isons of cell type-specific and differentially regulated genes.

These experiments yielded consistent and reproducible results

and were used as case demonstrations to introduce SEQUIN.

Moreover, we developed the iPSC Profiler, a convenient gene

module scoring tool that provided quick confirmation of suc-

cessful differentiation of human pluripotent cells into the three
Cell Reports Methods 3, 100420, March 27, 2023 9



Figure 7. iPSC Profiler module scores

(A) Heatmap module scores from both ScoreCard and iPSC Profiler indicating similar scores for pluripotency, ectoderm, mesoderm, and endoderm.

(B) UMAP plot colored by pluripotency module scores reveals high scores in hESCs (WA09).

(C–E) Endodermmodule scores are highest in the endoderm cluster. Similarly, the ectoderm andmesoderm clusters are represented by their respectivemodules.

(F) Module for housekeeping genes yields comparable results across all cell clusters analyzed.
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embryonic germ layers. Because transcription factor-based re-

programming of somatic cells into iPSCs is a widely used tech-

nology, many new cell lines have been or are in the process of

being generated. However, standardized RNA-seq data analysis

for iPSCs has not been reported so far. The iPSC Profiler can aid

in characterizing new cell lines including determining successful

reprogramming, assessing cellular heterogeneity, and multiline-

age differentiation potential. In the future, we envisage that gene
10 Cell Reports Methods 3, 100420, March 27, 2023
modules for other terminally differentiated cell types (e.g., hepa-

tocytes, cardiomyocytes, neuronal subtypes) can be incorpo-

rated into SEQUIN. In summary, SEQUIN empowers users

from different backgrounds and levels of bioinformatics exper-

tise to perform customizable analyses of bulk and single-cell

RNA-seq in real time and in one location. We propose that

SEQUIN sets a standard for RNA-seq analysis within the R/Shiny

environment.



Table 1. Comparison of SEQUIN with other available apps

Feature SEQUIN

IRIS-

EDA

Partek

Flow

10XGenomics

Cellranger and

Cell Loupe

Browser

TIBCO

SpotFire

OmicsOffice

Illumina

BaseSpace

and DRAGEN

FlowJo

SeqGeq

TCC-

GUI

RNfuzzy

App FGCZ

RNAseq

DRaMA

SCHN

APPs

Free U U ✗ U ✗ ✗ ✗ U U U U U

Server is

already hosted

U U U U ✗ U U U ✗ U ✗ ✗

Sever stability/

disconnects

U ✗ U U N/A U U ✗ N/A U N/A N/A

Analyze both bulk

and single-cell

RNA-seq

U ✗ U ✗ ✗ U U ✗ ✗ Ua,b ✗ ✗

Subset samples U ✗ U ✗ Ua ✗ ✗ ✗ ✗ U ✗ ✗

Library merging U ✗ U Ua Ua ✗ ✗ ✗ ✗ ✗ ✗ ✗

Batch

correction (bulk)

U ✗ U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Sample outlier

detection/removal

U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ U ✗

QC reporting

(library size)

U U U U ✗ U U U U ✗ U U

Sample correlation U U U ✗ ✗ U ✗ ✗ ✗ ✗ U ✗

Sample clustering

(distance)

U U U ✗ ✗ U ✗ U U U U U

Cell clustering

(distance)

U U U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ U

Cell clustering

(2D or 3D)

U U U U ✗ ✗ U ✗ ✗ ✗ ✗ U

DE analysis U U U U U U U U U U ✗c U

DE model

customization

high medium medium none none low medium none none none nonea low

tSNE U U U U ✗ ✗ U ✗ ✗ ✗ ✗ U

UMAP U ✗ U ✗ ✗ U ✗ ✗ ✗ ✗ ✗ U

PCA U U U ✗ U U U U U U U U

Violin plot U ✗ U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ U

Dot plot U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Boxplot U ✗ U ✗ U ✗ ✗ U U U ✗ U

Scatterplot U U U ✗ U ✗ U ✗ ✗ ✗ ✗ U

Volcano/MA plot U U U ✗ U U U U U U U U

Heatmap U U U ✗ U ✗ U U U U U

Plot customization

of content or

aesthetics

high low high none high low medium high low low medium medium

Gene set

enrichment

analysis

U ✗d U ✗ U U U ✗ U ✗ U ✗

Custom cell

clustering including

merging clusters

U ✗ U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ U

Cell gene

module scoring

U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Key features in SEQUINwere compared with those in other available apps for presence or absence or strength in customization options for the feature.

2D, two-dimensional; DE, differential expression; QC, quality control.
aRequires more complicated manual or command line work to accomplish the task.
bIn separate R/Shiny apps with limited functions.
cOnly visualizes pre-computed DE results.
dOnly provides DE gene results table for export outside of the app (for GSEA).
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Limitations of the study
Despite the user-friendly interface and capability to perform

rapid analyses of bulk and single-cell RNA-seq datasets,

SEQUIN does not allow for indefinite data storage. This limitation

would require the users to upload data for each session, as data

are not retained in this application. Another limitation is inherent

to the R and R/Shiny software environment: data are stored in

memory, so it can be time consuming to wait for new data to

load and be ready to use. These limitations are surmountable if

the user installs a local instance of the application with suffi-

ciently powerful hardware.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Dataset workflow

d QUANTIFICATION AND STATISTICAL ANALYSIS
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

scRNA-seq dataset (IS006_WA09) Tristan et al.7 NCBI SRA PRJNA657268

Bulk RNA-seq dataset (ISB003_WA09) Tristan et al.7 NCBI SRA PRJNA657268

Bulk RNA-seq dataset (ISB003_WA09) Chen et al.22 NCBI SRA PRJNA552890

Bulk RNA-seq dataset (example_bulk) Walker et al.23 NCBI GEO GSE110021

Software and algorithms

SEQUIN This paper https://sequin.ncats.io/app/, https://doi.

org/10.5281/zenodo.7554907

IRIS-EDA Monier et al.18 https://bmbls.bmi.osumc.edu/IRIS/

Partek Flow Kanehisa Laboratories and

Pathway Solutions, Inc.

https://www.partek.com/partek-flow/

10X Genomics Cellranger

and Cell Loupe Browser

10X Genomics, Inc. https://www.10xgenomics.com/

products/loupe-browser

https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/installation

TIBCO SpotFire OmicsOffice PerkinElmer, Inc. https://perkinelmerinformatics.com/

products/exclusive-reseller/tibco-spotfire

Illumina BaseSpace and DRAGEN Illumina, Inc. https://www.illumina.com/products/

by-type/informatics-products/

basespace-sequence-hub/apps.html

FlowJo SeqGeq BD Biosciences, Inc. https://www.flowjo.com/learn/

flowjo-university/seqgeq

TCC-GUI Su et al.19 https://github.com/swsoyee/TCC-GUI

RNfuzzyApp Haering et al.20 https://gitlab.com/habermann_

lab/rna-seq-analysis-app

FGCZ Functional Genomics

Center Zurich

https://github.com/fgcz

RNAseq DRaMa HSS David Z. Rosensweig

Genomics Research Center

https://hssgenomics.shinyapps.

io/RNAseq_DRaMA/

SCHNAPPS Jagla et al.21 https://www.rna-seqblog.com/

schnapps-single-cell-shiny-applications/
RESOURCE AVAILABILITY

Lead contact
Further information and resource requests should be directed to Ilyas Singeç (ilyassingec@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key resources

table. Six publicly available experimental RNA-seq datasets are included in the app for training and demonstration purposes.

The datasets generated by the Stem Cell Translation Laboratory (SCTL) were derived from hESCs (WA09) and iPSCs (LiPSC-

GR1.1): ‘‘ISB003’’ (WA09 differentiated into three germ layers);7 bulk RNA-seq data ‘‘ISB008’’ (WA09 and LiPSC-GR1.1) from

Chen et al.22 and four scRNA datasets from Tristan et al.7: ‘‘IS020’’ (WA09 cultured manually and robotically); ‘‘IS018’’ (WA09

differentiated into neurons), ‘‘IS006_WA09’’ (WA09 differentiated into three germ layers); ‘‘IS006_11’’ (LiPSC-GR1.1 differenti-

ated into germ layers). A small RNA-Seq dataset ‘‘example_bulk’’ is from WI-38 fibroblasts with and without TGF-b treatment
e1 Cell Reports Methods 3, 100420, March 27, 2023
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on days 1 and 20 from Walker et al.23 This dataset was selected because it is from human-derived samples, has a simple and

balanced experimental design, and includes sufficient metadata to demonstrate all features and statistical models available for

bulk RNA-seq in SEQUIN. A small scRNA-seq dataset ‘‘example_sc’’ was obtained from the IRIS-EDA GitHub repository

(https://github.com/OSU-BMBL/IRIS) and consists of human preimplantation embryos and hESCs at different passages.18

This dataset was selected because it is from human-derived samples and is small but sufficient for quickly demonstrating

all features available for scRNA-seq in SEQUIN. A publicly hosted version with example datasets from SCTL and the literature

is available at https://sequin.ncats.io/app/.

d All original code and a stand-alone package that can run locally is available here: https://github.com/ncats/public_sequin. All

original code has been deposited at Zenodo and is publicly available as of the date of publication under https://doi.org/10.

5281/zenodo.7554907.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Dataset workflow
The primary workflow is as follows: loading data from the existing bulk database or custom upload, Data structure, Analysis, and the

iPSC Profiler (Figures 1 and 2). Extending from two previous frameworks, IRIS-EDA and scClustViz, there are many feature enhance-

ments for analysis that can be finely adjusted by the user in a highly interactive fashion.12,18

We included two main additional features for bulk RNA-Seq: removing outliers and batch correction. Outliers can be iden-

tified by selecting ‘‘Subset data’’ then ‘‘Identify outliers’’ which creates a PCA. The user can select specific samples or tech-

nical replicates to remove. If bulk samples from different sequencing libraries are selected, batch correction is run by default

using the RUVSeq RUVg algorithm with an empirical set of housekeeping genes.24 We chose RUVg batch correction because

it does not dampen biological signals as aggressively as other methods, such as ComBat-seq.25 RUVg does not require a

balanced experimental design with the same samples in each batch, making it highly convenient for merging disparate

sequencing libraries. If batch correction was performed, the weighting variable is included first in the design as recommended

by Risso et al.24

We included five main features for single-cell data: 1. calculate multiple nearest-neighbor resolutions to find ideal cluster assign-

ment, 2. improved visualizations using clustree for resolution selection, with converted scClustViz plots to ggplot2 and lasso selection

for Seurat-based plots, 3. GSE, 4. options to manually combine nearest-neighbor clusters and create updated clusters based on the

expression of selected gene(s), and 5. the iPSC Profiler tool. For both bulk and scRNA data, the user canmerge samples across mul-

tiple experiments in the database or their own uploaded data, allowing comparisons to previously published data. For bulk data, we

have also included batch correction, which allows for rapid comparison across datasets with reduced technical confounding factors.

To exemplify the utility of SEQUIN, we describe bulk and single-cell analysis of human embryonic stem cells (WA09,WiCell, Madison,

WI) and iPSCs (LiPSC-GR1.1, NIHCommon Fund) that were differentiated into ectoderm, endoderm, andmesoderm using standard-

ized kits (STEMCELL Technologies) as previously described.7

As the number of cells increases for scRNA experiments, so do the limitations within the R environment. While it is possible to load

upwards of 100,000 cells into R, this will cause problems in R/Shiny.While we can confirm that we are able to load and analyze 55,074

cells in SEQUIN, it comes with a significant wait time for loading plots, tables, and complete analyses. As scRNA datasets become

even more prevalent and larger, this will also be a limitation of the app.

Although we included the option to batch correct bulk RNA-seq datasets, we did not include batch correction for scRNA da-

tasets. Differential gene expression tests are sensitive to batch effects, but most approaches can only control for simple batch

structure.26 More complex experimental designs such as unbalanced samples or uneven total cell counts across datasets can

be problematic. We tested several batch corrections approaches on various scRNA datasets as well as simulated data, and we

concluded that the majority of these methods completely dampened true biological signal rather than simply removing batch

effects.

The iPSCProfiler was developed as a tool to quickly visualize the expression of gene sets in samples or cells or the score for a given

gene module. The score is directly computed from Seurat’s AddModuleScore function, developed by Tirosh et al.27 Since our data

focuses on stem cells and iPSCs, genes from the ScoreCard were included in addition to longer literature and internal experimental

based gene lists for the three primary tissue lineages.16 The user may choose either the canonical or expanded modules for fast

assessment of early lineage attainment, as indicated by module name. For a brief comparison of the module score differences for

multilineage differentiation, see Figure 7A.

QUANTIFICATION AND STATISTICAL ANALYSIS

The application was built on several existing statistical packages in R. Namely, the following were used in whole or part with adap-

tations described previously: DESeq2,28 limma-voom,29 and edgeR30 for bulk RNA-Seq data analysis; Seurat,10 including the

AddModuleScore function developed by Tirosh et al.27 in the iPSC Profiler tool; RUV-Seq batch correction methods for bulk
Cell Reports Methods 3, 100420, March 27, 2023 e2
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RNA-Seq by Risso et al.24; scClustViz12 and clustree11 converted to ggplot2 plots for scRNA-Seq clustering; enrichR for gene set

enrichment. Exact steps, settings, and significance thresholds used in SEQUIN for scRNA-Seq and bulk RNA-Seq data analysis

were described in the previous sections, ‘‘Workflow for bulk RNA-seq data analysis’’ and ‘‘Analyzing scRNA-seq data’’, respectively.

Sample counts for the bulk datasets pre-loaded in the application are: ‘‘ISB003_WA09’’: 16; ‘‘ISB008’’: 6; ‘‘example_bulk’’: 48. Cell

counts for the pre-loaded scRNA datasets are: ‘‘example_sc’’: 90; ‘‘IS020_WA09’’: 10058; ‘‘IS018’’: 3875; ‘‘IS006_WA09’’: 16582;

‘‘IS006_11’’: 19759.
e3 Cell Reports Methods 3, 100420, March 27, 2023
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