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1 | INTRODUCTION

Flow cytometry enables high content analysis of cell populations from
heterogeneous samples through the identification of surface and
intracellular antigen expression using fluorescent-labeled molecular
probes (Chattopadhyay et al., 2008). It can provide insights in
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Abstract

Background: A key step in clinical flow cytometry data analysis is gating, which
involves the identification of cell populations. The process of gating produces a set of
reportable results, which are typically described by gating definitions. The non-stan-
dardized, non-interpreted nature of gating definitions represents a hurdle for data
interpretation and data sharing across and within organizations. Interpreting and
standardizing gating definitions for subsequent analysis of gating results requires a
curation effort from experts. Machine learning approaches have the potential to help
in this process by predicting expert annotations associated with gating definitions.
Methods: We created a gold-standard dataset by manually annotating thousands of
gating definitions with cell type and functional marker annotations. We used this
dataset to train and test a machine learning pipeline able to predict standard cell
types and functional marker genes associated with gating definitions.

Results: The machine learning pipeline predicted annotations with high accuracy for
both cell types and functional marker genes. Accuracy was lower for gating defini-
tions from assays belonging to laboratories from which limited or no prior data was
available in the training. Manual error review ensured that resulting predicted anno-
tations could be reused subsequently as additional gold-standard training data.
Conclusions: Machine learning methods are able to consistently predict annotations
associated with gating definitions from flow cytometry assays. However, a hybrid
automatic and manual annotation workflow would be recommended to achieve opti-

mal results.
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applications such as the identification of disease biomarkers, immune
regulatory mechanisms, and cellular signaling. As such, flow cytometry
is an important tool in drug discovery and development in areas such
as biomarker discovery, receptor occupancy and target engagement
assays, and target-based and phenotypic screenings (Edwards &
Sklar, 2015; Gedye et al., 2014; Moulard & Ozoux, 2016).
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Recent years have seen tremendous development in multiplexing
capabilities of flow cytometry instrumentation, namely with the devel-
opment of full spectrum flow cytometry (Nolan et al., 2013;
Robinson, 2019). This innovation has reached the clinical space and is
implemented in high parameter flow cytometry assays in multi-center
clinical trials. Such trials generate data from hundreds to thousands of
samples across multiple flow cytometry assays that are capable of
reporting on hundreds to thousands of different reportable results
(“reportables”). Leveraging these new capabilities, for instance, phar-
maceutical companies employ an evolving mix of flow cytometry
assays during the drug project life cycle, stemming from a range
of internally-developed assays and potentially multiple external
laboratories.

The sharing of the biomarker data produced by these assays
enables its reuse, reanalysis, and reproducibility (Bhattacharya
et al., 2018). However, effective sharing following best practices, such
as those exemplified by the FAIR data sharing principles (Wilkinson
et al., 2016), presents numerous challenges, such as those deriving
from differences in sample management, instrumental setup, and data
analysis (Finak et al, 2016; Maecker et al, 2010; Montante &
Brinkman, 2019). Although much attention has been given to the har-
monization and alignment of flow cytometry instruments in multi-
center trials (Finak et al., 2016; Jamin et al., 2016; Larbi, 2017; White
et al,, 2015), there is still no guidance and/or tools for the standardiza-
tion of flow cytometry data analysis and harmonization, such as the
management of an assay's multiple reportables. Moreover, data incon-
sistencies and errors can make cross-study analysis particularly diffi-
cult to execute. These factors, among others, increase the burden of
deploying high parameter flow cytometry in the clinic.

The particular case of validated flow cytometry assays from clini-
cal research organizations (CRO) is worth highlighting for its complex-
ity. Here, scientists are faced with complex assay development setups
that include the creation of reportables for each new validated assay.
Due to the increasing complexity of biomarker strategies in early
phase clinical trials in the last few decades (Califf, 2018; Freidlin
et al.,, 2010), it is becoming ever more common that target-specific
assays have to be generated for each new molecule being assessed in
the clinic (e.g., receptor occupancy assays), which, in turn, means that
scientists face an increasing demand for annotating the new report-
ables that are being generated by the CROs.

These reportables often have strong limitations in their format
and length due to the vendor's database setup or existing data model
that supports data transfer from vendor to sponsor. Moreover, differ-
ent CROs have different rules on how to create reportables, and some
have no rules at all. Finally, these reportables can show a mix of multi-
ple properties of what is being measured (cell type of interest,
functional marker of interest, reference cell population, unit of mea-
surement, etc.). In the past, scientists could easily decipher these
reportables because flow cytometry in clinical trials would usually
report only major lineage populations and assay complexity was small
(e.g., CD45+CD3+CD8+(%CD3+)). With the introduction of high
parameter instrumentation in the clinic, assays are now able to report
on deep immunophenotyping and scientists are no longer faced with a
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list of a few dozen relatively simple reportables but with lists of poten-
tially hundred to thousands of complex ones (e.g., CD45+CD3
+CD8+CD45RA+CD197+CD95+CD28+ (%CD8+N)).

These complex flow cytometry datasets that can comprise dozens
of different assays generated by multiple CROs throughout multiple
clinical trials are a rich source of information for reverse translation
efforts that are being carried out throughout the pharmaceutical
industry. Standardization and automation mechanisms for flow cyto-
metry reportables annotation metadata are critical factors for the suc-
cess and simplification of said efforts.

The focus of this study is on the way reportables are described,
which are typically represented using unstructured text strings, some-
times referred to as “gating definitions,” that comprise relevant
markers and other information about the assay. Due to a lack of wide-
spread standards, gating definitions can be written in multiple ways,
which is recognized as an obstacle for data sharing (Overton
et al., 2019). For example, multiple gating definitions can be derived
from a single gating hierarchy and, therefore, knowledge of the gating
hierarchy is insufficient to characterize a gating definition. Integration
of gating definitions from flow cytometry datasets is typically done
through manual curation, with its associated perils, such as curation
inconsistencies, drift and errors (Rodriguez-Esteban, 2015).

Overton et al. (2019) introduced an approach to check the validity
and consistency of gating definitions for 4388 gating definitions pro-
duced by a set of 28 academic centers. Their approach leveraged
ontology mapping and, in particular, the Cell Ontology (CL) (Diehl
et al., 2016) and the Protein Ontology (PRO) (Chen et al., 2020; Natale
et al, 2011). It involved, among other steps, mapping gating defini-
tions to marker gene names and intensity levels using a rule-based
method. As stated by the authors, however, pure rule-based
approaches have shortcomings in dealing with textual ambiguity.
Owing to incomplete ontologies, ontology mapping can lead to false
negatives due to unmatched relevant concepts. Additionally, rule-
based methods can struggle to capture complex relations between
elements of the text.

In this study, we explored a related problem to that reported in
Overton et al. (2019). We studied the feasibility of predicting cell
types and functional markers associated with gating definitions with
the help of machine learning (ML). Functional markers are markers
that provide additional properties (e.g., proliferation and exhaustion
status) but are not needed to define the cell types of interest in a par-
ticular assay. The cell types associated with each gating definition in
an assay and the presence or absence of specific functional markers
are of key interest for analyses concerning flow cytometry data
because the annotation of gating definitions with standard concepts
enables data integration and re-use. To tackle this problem, we
applied a supervised ML approach. ML approaches for handling
unstructured text have long been deployed in pharmaceutical research
and development, which involves the mining of large amounts of tex-
tual information (Rodriguez-Esteban, 2016). In particular, mapping and
classification of unstructured text is an area in which ML algorithms
for text mining have already shown their utility (Rodriguez-
Esteban, 2019). Examples of state-of-the-art ML algorithms used for
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text classification are based on deep learning neural networks
(Gonzélez-Carvajal & Garrido-Merchan, 2005; Minaee et al., 2021).
However, traditional algorithms have been shown to outperform deep
learning algorithms in tasks with low dimensionality, such as tabular
classification (Kadra et al., 2021; Shwartz-Ziv & Armon, 2022). The
selection and fine-tuning of such algorithms has often been done
manually but automatic selection pipelines (autoML) (He et al., 2021)
have been proposed as an unbiased alternative that is able to system-
atically explore different hyperparameters and configurations. Thus, in
this paper, we wanted to explore the feasibility of automatically iden-
tifying cell types and functional markers from gating definitions using
an ML algorithm selected through an automatic pipeline.

2 | METHODS

The dataset for this study comprised 4849 gating definitions from
36 assay panels belonging to four different laboratories. Despite dif-
ferences between the assays, some gating definitions were identical.
After deduplication, we had a total of 3045 unique gating definitions
available.

Most of the unique gating definitions (n = 3043) were interpreted
by scientific experts, which annotated them with 117 unique cell
types and 70 unique functional markers. An example of annotation of
interpreted cell type and functional marker can be seen in Table 1.
These annotations initially lacked some consistency. That is, the same
cell type or functional marker was written in different ways by differ-
ent experts. To increase consistency of annotation, annotated cell
types were mapped to an internal Roche cell type terminology which
integrates domain experts' feedback and multiple public ontologies
including CL, BRENDA Tissue Ontology, SNOMED, NCI Thesaurus
and MeSH; and is hosted by the Roche Terminology System (RTS),
which is an internally-developed platform for the management and
distribution of highly curated terminologies currently covering around
130,000 concept entries, and which is completely built on a semantic
technology stack providing uniform resource identifiers (URIs) to sup-
port data FAIRification at scale across all Roche functions and sites.
Very briefly, the creation of a cell type concept in RTS depends on
experimental evidence showing that the said cell type has cellular
functions different from other existing cell types. The mapping to the

RTS terminologies involved manual expert curation and, additionally,

TABLE 1 Examples of gating definitions mapped to cell types and
markers
Functional
Gating definition Cell type marker
CD3+CD4+CD25_APC MFI  Lymphocyte T, CD25
CD4-positive
CD8+PD-1 Tcell Lymphocyte T, CD279
MESFNaHepLDTCL CD8-positive
Median CTLA4 in CD19 Lymphocyte B CD152
%4-1BB in CD16 Natural killer cell CD137
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rule-based automated quality control. For example, annotated marker
gene names were harmonized to CD names where available. After the
harmonization, we had annotations corresponding to 56 unique cell
types and 62 unique functional markers, which became the target var-
iables for the ML algorithm.

Generalizability and reproducibility were emphasized in building
the overall ML prediction workflow. Gating definitions were pre-
processed by transforming them to lowercase, eliminating non-ASCII
characters and most non-alphanumeric characters. Following Overton
et al. (2019), a simple set of rules was applied to split (“tokenize”)
gating definitions into units by identifying “separator” elements.
These units (“tokens”) often corresponded to individual gates
(e.g., “CD3+CD4+CD25+” was split into the tokens CD3, CD4, and
CD25). Marker intensity definitions (e.g., plus and minus signs next to
individual gates, such as + in “CD3+"), where they existed, were
extracted for each token.

The dataset was divided into training (80%) and test (20%) sets.
Features for ML were based on all unique tokens produced by
tokenization of the training dataset. These features were then mat-
ched to all gating definitions in the training and test sets to produce,
respectively, the training and test feature values. Matches were not
allowed when there were numerical boundaries around the match
(e.g., the feature 45ra matched the gating definition “CD45RA+” but
the feature cd4 did not). Marker intensity definitions were used to
further refine feature values (e.g., a minus sign led to a feature value
of —1).

Ontology matching was applied to gating definitions to reduce
feature-set cardinality. For this purpose, the PRO release 62.0 in
OWL format, which included 331,920 terms, was downloaded from
the Protein Ontology Consortium site (proconsortium.org).

An ML pipeline was chosen with the aid of the TPOT autoML
(automated ML) library. AutoML algorithms can help the end-to-end
selection of an optimal pipeline of preprocessors, feature construc-
tors, feature selectors, ML models and hyperparameter optimization
for solving an ML task (He et al., 2021). The TPOT autoML library for
classification (Olson & Moore, 2016; v. 0.11.7) selects a model from a
list that, in its default configuration, includes Gaussian naive Bayes,
Bernoulli naive Bayes, multinomial naive Bayes, decision tree, extra
trees, random forest, gradient boosting, K-nearest neighbors, linear
support vector machine, logistic regression, extreme gradient boo-
sting, stochastic gradient descent, and multi-layer perceptron. The ML
pipeline was selected by running the TPOT autoML algorithm on the
training set. The selected pipeline was primarily evaluated in the test
set, which had not been seen by the autoML algorithm. Secondarily, it
was evaluated by 10-fold cross-validation on the entire dataset.

All code and data created for this study are available at: https://
github.com/raroes/prediction-flow-cytometry-gating-definitions

3 | RESULTS

A total of 3043 gating definitions were manually annotated by scien-
tific experts and harmonized to 56 unique cell types and 62 unique
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gating definition
e.g. CD4+CD45RA-CD197+CD279+ ABS

gating definitions
from new studies

meaningful interpreted cell type
e.g. central memory CD4+ cells

functional markers
eg. PD-L1

standardized cell type
e.g. Lymphocyte T, CD4-positive, central memory

standardized marker
e.g. CD274

<+«—— PRO ontology ——»

features

features

!

.

predicted cell types

predicted markers

predicted standardized
annotations

FIGURE 1

Prediction workflow for gating definitions mapped to ontology cell types. Gating definitions are manually mapped to meaningful

cell types and functional markers. Cell types and functional markers are chosen manually by experts based on their interpretation of the
definition. Afterward, these are mapped to standardized cell types and markers, with the aid of the PRO ontology, to serve as prediction targets

of the ML algorithm. ML, machine learning

functional markers (Table 1). Using this dataset, we developed a ML-
based prediction workflow to predict the cell type and functional
marker annotation associated with each gating definition, that is, to
solve a 56-class and a 62-class classification problem, respectively
(Figure 1 for the workflow schematic).

For cell type annotation prediction, the data was split into training
and test datasets. Based on the gating definitions in the training
dataset, a total of 281 features were created through data pre-
processing steps (see Section 2). Feature values were extracted for
both training and test datasets to feed the ML pipeline. An ML pipe-
line was selected and optimized by the TPOT autoML (automated
machine learning) algorithm. This pipeline was based on a stacking
architecture composed of a random forest classifier and a logistic
regression classifier. Using this pipeline, prediction accuracy on the
test set was 97.2%. The median area under the curve of the receiver
operating characteristic (AUROC) for each class was 0.999 and the
average AUROC was 0.95 + 0.12. Low performance for classes with
few available gating definitions in the training lowered the average
AUROC. The histogram distribution of AUROC values for all cell type
classes is shown in Figure 2. The overall 10-fold cross-validation accu-
racy for the ML pipeline was 94.2%.

Due to the way manually-curated cell type annotations were writ-
ten, these could be split into segments separated by commas. For
example, “Lymphocyte T, CD8-positive, regulatory” could be split into
three segments: “Lymphocyte T,” “CD8-positive” and “regulatory”
(Table 1). An error analysis showed that, out of 177 classification
errors made by the ML algorithm, 124 (70.1% of all errors) cor-
responded to discrepancies with the third segment of the annotations
(sub-subcategories). For example,

predicting “Lymphocyte T,

CD4-positive” when the actual class was

CD4-positive, naive.” Most predictions were, on the other hand, cor-

“Lymphocyte T,

rect with respect to the first segment (main category), which cor-
responded to the broader cell type (e.g., monocyte, neutrophil, T-cell),
except in 34 cases (19.2% of all errors). Table 2 shows a summary of
error types for cell type annotation predictions. A large share of errors
was due to predictions that were not specific enough (39%).

Data availability by source (i.e., external laboratory or internal
assay provider) varied widely, as can be seen in Table 3. To test the
ability of an ML pipeline trained on data from one source to success-
fully make predictions on test data from another source (i.e., transfer
learning), we performed several experiments. First, we tested a pipe-
line on data from a single source after being trained on the rest of the
sources. Results of this experiment can be seen in the first column of
Table 4 and indicate that lack of same-source data in the training set
had a strong negative impact on ML pipeline performance. The second
experiment involved mixing different amounts of same-source and
other-source data in the training set. As can be seen in Table 4, the
addition of more data to the training set, whether same-source or
other-source, generally improved prediction accuracy. It can also be
seen that including even as little as 10% of same-source data signifi-
cantly increased prediction accuracy in most cases.

We performed an analogous analysis with the prediction of func-
tional marker annotations. We manually labeled 3038 gating defini-
tions with functional marker annotations corresponding to 62 unique
marker names (Table 1). This dataset was then used for creating, train-
ing and testing an ML pipeline as previously described. An ML pipeline
based on logistic regression with L2 regularization was selected by
the TPOT autoML algorithm. The accuracy of this ML pipeline was
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FIGURE 2 Histogram of AUROC
values associated with the classification
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TABLE 2 Error analysis of cell type predictions
Error type % Example prediction
Prediction too specific 9 Lymphocyte T, CD4-positive, regulatory
Prediction too general 39 Myeloid dendritic cell
Main category error 19 Immature neutrophil
Subcategory error 7 Lymphocyte T, helper type 1
Sub-subcategory error 27 Lymphocyte T, CD4-positive, central memory

AUROC

T T T T T T T 1
0.0 0.1 0.2 0.3 0.40.50.60.70.8 0.9 1.0
AUROC

08 09 1.0

Example actual value

Lymphocyte T, CD4-positive

Myeloid dendritic cells, nDC1

Intermediate monocyte

Lymphocyte T, CD4-positive, regulatory
Lymphocyte T, CD4-positive, effector memory

Note: For each error type an example is shown of an erroneous prediction. The largest share of errors was due to predictions that were not specific

enough (39%).

TABLE 3 Number and percentage of curated gating definitions

available by source (i.e., external laboratory or internal assay provider)
Source % n
Internal 3.0 92
Laboratory 1 83.8 2551
Laboratory 2 6.0 184
Laboratory 3 7.1 216

98.5% on the test set. The median AUROC was 1.00 and the AUROC
average was 0.87 = 0.32 (Figure 2). The overall 10-fold cross-
validation accuracy was 95.0%.

We then carried out the same experiments that we had per-
formed with cell type annotation prediction in order to test the per-
formance of the ML pipeline when trained on data from a mix of
sources (Table 5). Similarly to the case with cell types, an increase in
training data availability, whether same-source or other-source, led to
greater accuracy (with one exception) and small amounts of same-
source data improved performance considerably. Table 6 shows an
error analysis for marker annotation predictions. The largest share of
errors was due to predictions that did not specify a marker (52%).

Because gene names are highly ambiguous (Liu et al., 2006), we
also explored following Overton et al. (2019) by using a gene name
ontology (PRO) to identify features that could have been derived from
different synonyms for the same gene name (see workflow in
Figure 1). A total of 16 features identified in the training set that cor-
responded to synonyms from eight genes were merged (e.g., the fea-
tures corresponding to the gene name synonyms ICOS and CD278

were merged into one feature). This, however, did not improve perfor-

mance for either cell type or marker classification.

4 | DISCUSSION AND CONCLUSIONS

This study showed the feasibility of using ML algorithms for annotat-
ing flow cytometry gating definitions with standardized cell types and
functional markers, thereby enabling the interpretation and integra-
tion of data provided by different assays deployed in multi-center
studies. More accurate and efficient data integration increases the
value of data and enhances its ability to generate clinical and biologi-
cal insights. The ML algorithms chosen in this study can easily be
re-trained as additional curated gating definitions are added to the
training data.

Overall, the annotation of functional markers showed better per-
formance than the annotation of cell types, which is possibly associ-
ated with differences in task complexity (Rodriguez-Esteban &
Loging, 2013). While the training data that best helped predicting
annotations belonged typically to assays developed by the same labo-
ratory, we showed that the inclusion of gating definitions from assays
belonging to other laboratories in the training data generally provided
additional predictive power, thereby confirming the value of transfer
learning.

Cell type annotation errors were most frequent in fine-grained
cell subtypes, as the main cell type was usually correctly predicted. As
would be expected, annotating cell types and functional markers for
which few examples were available in the training data was a chal-
lenge for the ML pipeline. This could be seen in the decreased
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Training data % of existing same-source 0 10
% of existing other-sources 100 0

Test data Internal 66.3 253
Laboratory 1 26.9 84.4
Laboratory 2 58.2 47.6
Laboratory 3 24.5 42.1
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100

83.
88.
63.
59.

TABLE 4  Accuracy of the prediction

50
pipeline for cell types when tested on
. = single-source data and trained on
1 89.1 91.3 different sets of sources
5 98.1 98.1
3 62.0 75.0
0 87.0 92.6

Note: The first column of results corresponds to a pipeline tested on 100% of the data available from a

single source (same-source) and trained on data from the rest of the sources (other-source). The second
column of results corresponds to an algorithm trained on 10% of same-source data plus 0% or 100% of
other-source data. The third column of results corresponds to an algorithm trained on 50% same-source

data plus 0% or 100% of other-source data.

Training data % of existing same-source 0 10
% of existing other-sources 100 0

Test data Internal 26.1 38.6
Laboratory 1 155 83.1
Laboratory 2 81.5 70.5
Laboratory 3 81.9 74.9

100

74.
83.
86.
97.

50 TABLE 5 Accuracy of the prediction
pipeline for markers when tested on
. HEY single-source data and trained on
7 91.3 97.8 different sources
8 98.8 96.8
7 94.6 98.9
4 92.6 98.1

Note: The first column of results corresponds to an algorithm tested on 100% of the data available from a
single source (same-source) and trained on data from the rest of the sources (other-source). The second
column of results corresponds to an algorithm trained on 10% of same-source data plus 0% or 100% of
other-source data. The third column of results corresponds to an algorithm trained on 50% same-source

data plus 0% or 100% of other-source data.

Error type % Example prediction
No marker predicted 52 No marker

No marker available 30 HLA-DR

Partial marker error 4 CD366

Full marker error 14 CD274

Example actual value TAEL!—I 6  Error analysis of cell type
predictions

CD25

No marker

CD279+CD366+

CD279

Note: For each error type an example is shown of an erroneous prediction. The largest share of errors

was due to predictions that did not specify a marker (52%).

AUROC for classes with low number of samples. Additionally, we
observed that the annotation of gating definitions from assays belong-
ing to laboratories for which there was no training data could lead to
poor performance due to differences in the way gating definitions are
written across laboratories. This can be addressed, as shown in our
experiments, by curating a small set of representative gating defini-
tions, so that the algorithm can learn to recognize the feature patterns
that define data from a never-before-seen laboratory. Thus, while we
have noted that “the more data the better,” manually-curated data
can, nonetheless, be gathered strategically to increase its representa-
tiveness and improve the performance of the ML pipeline at low cost.

Additional challenges to our ML approach include those typical
from operationalization of an ML algorithm (Mé&kinen et al., 2021),
such as tracking of ML model and dataset versions, as well as
maintaining consistency in the quality of manual annotations. The ML
algorithm itself can help in identifying consistency errors in manual

annotations if an error analysis is performed on its predictions. Based
on our practice, the output of the ML algorithm should be manually
checked, which ensures high quality in the final output with minimal
manual work. This output, in turn, can become additional high quality
training data.

A clear advantage of a purely ML approach over a rule-based
approach is that it does not depend on the currency, comprehensive-
ness or quality of the rules or ontologies used in the latter. However,
the use of an ML approach does not preclude the inclusion of rules or
ontologies. In fact, a mixed approach in which rules or ontologies were
used to engineer features may improve performance. In our case, we
tested the widely used ontology PRO to enhance our pipeline by nor-
malizing features derived from synonyms corresponding to the same
genes. This normalization did not, however, lead to an improvement in
performance, perhaps due to the limited number of ambiguous gene
synonyms identified.
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