

Abstract

PerturbDB is a database of Huntington's disease (HD) perturbation studies incorporating methods, outcomes, and experimental details from >10,000 experiments curated from >1,200 publications and CHDI study reports. In addition to maintaining provenance, several classes of experimental metadata have been curated, collectively describing the nature of the: a) HD model; b) perturbation; and c) readout/results. Wherever possible, metadata are standardized according to existing ontologies and custom vocabularies. HD models are characterized as either in vitro, in vivo, or in silico and organisms in scope include human, rodent, worm, fly and others. A perturbation is defined broadly as any type of intervention, e.g., pharmacological, genetic, lifestyle, etc. applied to an HD model. Readouts are described relative to the phenotype of the HD model without perturbation. Where applicable, directionality is assigned to each result, indicating whether the perturbDB is available within HDinHD (Huntington's Disease in High Definition; hdinhd.org) as an integrated component within the HD Explorer tool [1]. PerturbDB expands and replaces the more narrowly scoped Therapeutic Interventions (TI) studies section previously available within HD Explorer. Additionally, the broader offering will augment all pre-existing TI studies with outcome data for each readout.

PerturbDB enables rapid data mining of thousands of HD perturbations of a single gene across a spectrum of interventional paradigms impact the HD phenotype. The integration of PerturbDB within HD Explorer places these perturbations results within a greater HD experimental context, further facilitating interpretation and hypothesis generation.

Perturbation Experiment

A perturbation experiment is defined as one model and one perturbDB mostly focuses on phenotypic readouts, e.g. behavioral tests in animal models, or aggregation and toxicity in cell culture models. Generally, gene/protein expressions are outside of scope for PerturbDB except Htt levels. A single source, publication or report may include multiple experiments if several perturbations were studied, and a single experiment may have multiple readouts.

Sources of Perturbation Experiments

Source Category	Number
Publications (PubMed)	1,205
CHDI Reports	66
Preprints (bioRxiv)	4

Models

HD models are characterized as either in vitro, in vivo, ex vivo, or in silico and organisms in scope range across those described in the literature. Details about the model, such as cell line, animal strain, or cell type, are collected alongside additional experimental metadata, such as number of Q repeats in mHtt, and type of mHtt used (e.g., full length or exon 1 fragment).

Model Type	Model Name	Number of Experiments	
In vitro	Cell Culture	4,437 -	79 cell lines 22 primary cell types
Ex vivo	Brain Slices	110	
In vivo	Mice In Vivo	2,863 -	43 HD mouse lines and AAV, LV or chemically induced
	C. Elegans	1,836	
	Drosophila	866	
	Yeast	270	
	Rat In Vivo	87 -	2 HD rat lines and AAV, LV or chemically induced
	Human	45	
	Zebrafish In Vivo	23	
	Sheep In Vivo	2 -	1 HD sheep line
	Dictyostelium	2	
	Pig In Vivo	1	
In silico	GWAS	117	
Total		10,659	

Perturbations

A perturbation is defined broadly as any type of intervention applied to an HD model. In PerturbDB, the most common perturbation category is Knockdown via Gene Delivery followed by Small Molecule treatments.

Perturbation Category	Perturbation Effect	Number of Experiments		
	Knockdown	6,269		
	Overexpression	732		
Cono Dolivory	Dominant Negative	107		
Gene Delivery	Constitutively Active	33		
	Gain of Function	2		
	Loss of Function	1		
Small Molecule		1,908		
	Loss of Function	449		
	Overexpression	275		
	Knockdown	217		
Genetic Cross	Knockout	183		
Genetic C1055	Gain of Function	72		
	RNAi	61		
	Conditional Knockout	12		
	Constitutively Active	1		
HD Modifier Gene		117		
Peptide Delivery		88		
Protein Delivery		84		
	Knockout	24		
Gene Editing	Conditional Knockout	3		
Antibody Delivery		11		
Mixed		6		
Diet		2		
Cell-Based		2		

Readouts

Results are described relative to the phenotype of the HD model without perturbation.

lodel Type	Readout Type	Number of Readouts		
	Motor Behavior	3,686		
	Toxicity	2,185		
	HD Disease Symptoms (Ataxia, Gliosis, Seizures, etc.)	960		
	Aggregation	892		
	Survival	566		
	Body Weight	462		
	Htt Level, Clearance or Modification	219		
	Cognitive	219		
ר vivo	Other Physiological Functions	176		
	Stress Response	72		
	Neuronal Functions	47		
	Behavior	41		
	MRI	40		
	Autophagy	33		
	Psychiatric-Cognitive	32		
	CAG Repeat Stability	11		
	Other Cell Processes	4		
	Pain Response	3		
	Aggregation	1,712		
	Toxicity	1,580		
	Htt Level, Clearance or Modification	1,481		
n vitro	Neuronal Functions	216		
	Autophagy or Mitophagy	134		
	Other Cell Processes	77		
	CAG Repeat Stability	24		
n silico	HD Factors	122		
	Neuronal Functions	85		
	Toxicity	21		
x vivo	Aggregation	8		
	Htt Level	2		
otal		15,110		

In

In

E

Т

HD Explorer

PerturbDB is integrated within HDinHD's HD Explorer tool at https://www.hdinhd.org/

Therapeutic Intervention Merger

The original HD Explorer release in Apr-2021 included Therapeutic Intervention (TI) studies, focusing on in vivo behavior treatment studies [1]. The TI section has now been retired as all TI experiments are now contained within the larger PerturbDB. Additionally, PerturbDB augments all pre-existing TI studies with outcome data for each readout, and the Treatment Arms tab in study drill down includes additional experimental metadata.

Conclusions and Future Directions

PerturbDB enables rapid data mining of thousands of HD perturbation experiments to understand how perturbations of a single gene across a spectrum of interventional paradigms impact the HD phenotype. The integration of PerturbDB within HD Explorer places these perturbations results within a greater HD experimental context, further facilitating interpretation and hypothesis generation. Integration of PerturbDB in the HD Explorer allows quickly identify all Perturbation experiments published for a gene of interest, filter on other parameters like model or readout and quickly find results of this experiments.

We are currently curating outcome data for each arm of a large set of in vivo studies currently represented in PerturbDB. This will enable users to understand the effect of dosing and other experimental parameters on outcomes. We anticipate regular updates to PerturbDB in order to incorporate the emerging literature. We are planning to develop summary views that collate results across similar (e.g., shared treatment) sets of publications and reports.

Grid Overview

The Grid view presents a list of available experiments and key metadata for them: source, target gene symbol, summary, model, treatment and perturbation. Values in each column can be sorted or filtered using Excel-like controls in the column headers.

Clicking on the left corner icon opens a facet menu allowing users to filter experiments on additional fields: Treatment Category, Perturbation Type, Readout Category, Readout, and Improve/Worsen HD Phenotype.

Individual Experiment View

Selecting an individual experiment opens a drill down view to explore experimental details, which are presented in 3 sections: Source, Model and Perturbation. The Model tab provides information on the HD model used in the selected experiment. The Perturbation tab provides details of the perturbation, including target and pharmacology, as well as Readout results.

Freatment Category		Source Id	Gene Symbol	E Summary		Model	Treatment	Perturb Type	Perturb Value
Select	-	PubMed:9786889	MAP2K4	L↓ Sort Ascending	n of SEK1 (K54R) overexpressio	Cell Culture	pEBG-SEK1(K54R)	Gene Delivery	Dominant Negative
Perturbation Type		PubMed:9786889	MAP2K4		n of SEK1 (K54R) overexpressio	Cell Culture	pEBG-SEK1(K54R)	Gene Delivery	Dominant Negative
Select	•	PubMed:9786889	MAP2K4	E× Remove Sort	EK1 with plasmid construct expre	Cell Culture	pEBG-SEK1	Gene Delivery	Overexpression
		PubMed:9786889	MAP2K4	Show rows where:	EK1 with plasmid construct expre	Cell Culture	pEBG-SEK1	Gene Delivery	Overexpression
Readout Category		PubMed:9809064	SH3GL3	contains 👻	th expression constructs encodin	Cell Culture	pTL1-HA-SH3GL3	Gene Delivery	Overexpression
Select	•	PubMed:9809064	SH3GL3		th expression constructs encodin	Cell Culture	pTL1-HA-SH3GL3	Gene Delivery	Overexpression
Readout		PubMed:10051007	APOE		2epsilon3 genotype is associated.	Human		HD Modifier Gene	
Select	•	PubMed:10353249	CASP1	contains 🗸	zVAD-fmk-treated R6/2 mice perf.	Mice In Vivo	zVAD-fmk	Peptide Delivery	
nprove/Worsen HD Phen	otype	PubMed:10353249	Casp1		crossed to R6/2 decreased aggr	. Mice In Vivo		Genetic Cross	Loss of Function
Select	-	PubMed:10463359	APOE	Filter Clear	the group of patients with the ep.	Human		HD Modifier Gene	

Acknowledgements

PerturbDB is funded and developed by CHDI Foundation, Inc., a nonprofit biomedical research organization exclusively dedicated to collaboratively developing therapeutics that will substantially improve the lives of those affected by Huntington's disease. Colleagues at Rancho BioSciences contributed data curation, data modeling and data engineering support, and Bridlewood Consulting contributed systems and software engineering support. The pilot system that inspired the current PerturbDB was developed by Jim Wang while working as a consultant for CHDI Foundation [2].

References

1. Aaronson J et al., *J Huntington's Dis* 2021,10(3):405-412. doi: 10.3233/JHD-210491 2. Wang JKT et al., Frontiers in Neuroscience 2017,11:149.

