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Searching for Genomic Biomarkers for Major
Depressive Disorder in Peripheral Immune Cells

Ke Xu and Bradley E. Aouizerat
Challenges to the diagnosis and treatment of patients with
psychiatric disorders have long been acknowledged in the
field. In recent years, efforts have been made to identify
genomic biomarkers for psychiatric disorders. A link between
immune function and major depressive disorder (MDD) has
been suggested for decades (1), but the identification of
differentially expressed genes (DEGs) that underlie immune
function as biomarkers for MDD has been more recent. Hun-
dreds of DEGs have been reported for transcriptome-wide
association studies (TWASs) of MDD. However, the majority
of DEGs reported among individual studies do not overlap,
making prioritization of candidate biomarkers challenging.
Thus, integrating findings from multiple studies is critical to
establish reliable DEGs as biomarkers for MDD. Leveraging
publicly available datasets, Wittenberg et al. (2) demonstrated
that integration of gene expression data from multiple studies
provides new insights on immune gene function and gene
networks for MDD. The identified genes and networks could
serve as biomarkers for MDD.

A biomarker is defined as “a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic response
to a therapeutic intervention” (3). Thus, a biomarker should not
only be statistically associated but should also reflect a bio-
logical or pathophysiological process related to the phenotype
of interest. Because of limited access to brain tissue for MDD
biomarker discovery, TWASs have been conducted using pe-
ripheral cells as direct or indirect (surrogate) biomarkers for
MDD.

Marked heterogeneity among TWAS findings is a commonly
appreciated challenge to biomarker discovery. For DEGs,
challenges include platform variation, data quality and scale,
cell type heterogeneity, and study design (i.e., participant se-
lection bias, sample size/power, and confounding factors).
These challenges can contribute to erroneous association
signals in TWASs for MDD. Platform variations make a direct
comparison of DEGs across studies difficult; among 10 studies
included in Wittenberg et al. (2), 6 different platforms were used
for transcriptome profiling. Cell type heterogeneity could
restrict or mask the detection of DEGs within a specific cell
type that is underrepresented among heterogenous cells, and
this is particularly relevant in MDD, where variation in cell type
proportions may occur between MDD and non-MDD groups. In
Wittenberg et al. (2), gene coexpression modules identified in
whole blood, including neutrophils, differed substantially from
peripheral blood mononuclear cells. Variation in inclusion and
exclusion criteria across studies as well as unmeasured or
unadjusted variables may confound association signals.
Together, these barriers contribute to poor replication of DEGs
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and slow the progress of genomic biomarker discovery for
behavioral phenotypes such as MDD. These challenges are
crucial to consider when integrating data such as by meta-
analysis to avoid erroneous findings in downstream analysis.

Data integration can involve integrating “omic layers” (e.g.,
genomic, epigenomic, transcriptomic, or metabolomic data)
from the same study, a single layer of omic data from different
studies, or both. Numerous statistical methods have been
applied to integrate datasets and meta-analysis. Wittenberg
et al. (2) used a simple “harmonized differential expression
analysis” in 8 independent studies followed by standardized
mean difference meta-analysis in a subset of 4 datasets from
whole blood. The intent of the approach was to reduce varia-
tion across and improve quality of individual studies by filtering
outliers, normalizing gene expression data generated from
different platforms, and using the same statistical model and
covariates. Such harmonization enables a clearer comparison
of top signals from different studies. The authors found 272
concordantly expressed genes from the top 3% most DEGs
across the studies (i.e., the “harmonized overlap list”), 5 times
more DEGs than found in the “published overlap list.” This data
integration approach enabled the downstream analysis of
network identification, gene prioritization, and causality
analysis.

The harmonized overlap genes were not only statistically
significant but also enriched for biologically meaningful net-
works. Gene ontology enrichment, protein-protein interaction
network, and gene coexpression network analyses of the 272
DEGs supported a role for innate immune function in MDD, a
finding that aligns with previous evidence regarding the sys-
tematic immune activation and inflammatory response in pe-
ripheral immune cells in MDD (4). Although DEGs identified in
peripheral cells likely differ from DEGs in the brain, it is
reasonable to expect that a subset of genes mediating the
body–brain interaction may serve as biomarkers for clinical
use. If replicated, the converging lines of evidence in the form
of overlapping genes, coexpressed genes, and networks may
produce candidate biomarkers for future clinical care of pa-
tients with MDD.

Wittenberg et al. (2) illustrate the potential of integrative
approaches to leverage available data to advance MDD
biomarker discovery. Along those lines we offer several ave-
nues to accelerate further MDD genomic biomarker discovery.

RNA Sequencing Techniques. To date, the majority of
DEGs identified resulted from array-based and short-read RNA
sequencing (RNA-seq) platforms. Short-read RNA-seq is
inexpensive, is easily implemented, and produces high-quality
sequencing data. However, the gene expression estimates
RTICLE ON PAGE 625
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Figure 1. A Circos plot showing cell type–specific gene enrichment in human PBMCs (K. Xu M.D., Ph.D., et al., unpublished data, August 2020). A total of
16,000 PBMCs were isolated from 2 healthy individuals. Single cell transcriptomes were profiled by single-cell RNA sequencing using 10X Genomics
Chromium Single Cell 3ʹ Solution (Pleasanton, CA). Six cell types were defined by a generalized linear model–based cell mapping approach with cell type–
specific “marker” genes. Gene set enrichment analysis of the top 500 variable genes in each cell type was performed using Kyoto Encyclopedia of Genes
and Genomes annotation. A total of 48 pathways were significant (p, 0.05), including 28 unique pathways expressed in specific cell types and 20 pathways in
$2 cell types. The oxidative phosphorylation and spliceosome pathways were common in 5 of 6 cell types. HTLV-1, human T-cell lymphotropic virus type 1;
mRNA, messenger RNA; NK, natural killer; NOD, nucleotide-binding oligomerization domain; PBMC, peripheral blood mononuclear cell; TNF, tumor necrosis
factor.

Commentary
Biological
Psychiatry
lack full transcriptome length measures, which is problematic
when analyzing large genes and alternative transcripts. This
limitation can be overcome by long-read RNA-seq , which can
generate reads of up to 15 kb, reduce sequence read mapping
ambiguity, and decrease the false positive rate of slice junction
detection (5). However, a limitation of long-read RNA-seq is its
relatively low throughput. Nevertheless, this technique can be
applied to verify significant genes of long length.

Cell Type–Specific Transcriptome Analysis. Gene
expression is highly cell type and tissue specific. Cell type
heterogeneity may result in erroneous DEG identification.
Single-cell RNA-seq can be pursued directly or computa-
tionally by parsing gene expression profiles from bulk
592 Biological Psychiatry October 15, 2020; 88:591–593 www.sobp.or
RNA-seq to cell type–specific signals. Gene pathways can
also be identified in a cell type–specific fashion. We recently
profiled the transcriptome of 16,000 peripheral blood mono-
nuclear cells from 2 healthy participants. We performed a
gene enrichment analysis for the top 500 variable genes in
each of 6 cell types separately: B cells, CD141 monocytes,
CD41 T cells, CD81 T cells, IL7CD81 T cells, and natural
killer cells. As shown in Figure 1, the majority of pathways are
cell type specific. Among 48 significant pathways among 6
cell types, only 20 pathways were common in $2 cell types.
Future studies aimed at identifying cell type–specific DEGs
and pathways may more precisely reveal the mechanisms of
cell type–specific immune function in MDD and improve MDD
biomarker prediction.
g/journal
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Computational Integration of Omics Data. A large-
scale genome-wide association study reported a number
of significant loci associated with MDD (6). Epigenome-
wide association analysis has also identified MDD genes
with differentially methylated loci (7), and proteomic studies
have identified proteins associated with MDD (8). Large-
scale data integration calls for more sophisticated
computational methods (9). Methods for metadimensional
analysis includes 3 categories (10): 1) concatenation-based
integration (combines individual raw or processed data sets
before analysis); 2) transformation-based integration (indi-
vidual datapoints are transformed before analysis); and 3)
model-based integration (each data set is analyzed inde-
pendently and followed by integrating the results). These
statistical methods along with artificial intelligence tools will
offer a number of avenues to integrate omics data, which
may help us better understand the functions of genes for
MDD and may build better models to predict individuals
with MDD.

Improved Phenotype Assessment and Continued
Data Sharing. Currently available TWASs were conducted
using case-control cross-sectional designs. The DSM-5
diagnosis of MDD is based on self-reported symptoms and
clinical observations that are subject to bias. Cross-
sectional assessment of MDD may result in spurious
TWAS associations. Future TWASs need to consider better
clinical assessment. For example, longitudinal data with
multiple assessments to define MDD may yield a more ac-
curate phenotype to identify DEGs. Leveraging electronic
medical records makes this approach possible. Another
example is the response to antidepressant treatment for
genomic marker discovery. The recruitment of a large
number of participants for longitudinal study or for subtype
identification of MDD remains challenging in terms of both
time and cost. Thus, establishing a consensus for pheno-
type selection and continuing to share data is essential for
future biomarker discovery.

In summary, the findings of Wittenberg et al. (2) represent a
clear step forward in the identification of DEGs in MDD. The
study highlights the importance of data sharing in the com-
munity. With the advanced technology and computational
tools available, the replication of the identified genes as a
prelude to evaluation of gene function are warranted. Further
integrating such “big data” across different functional layers is
Biological Psy
expected to achieve more robust and effective biomarker
discovery for MDD.
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